# 12.5: Harmonic Perturbation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Consider a (Hermitian) perturbation that oscillates sinusoidally in time. This is usually termed a harmonic perturbation. Such a perturbation takes the form

$\label{e13.51} H_1(t) = V\,\exp(\,{\rm i}\,\omega\,t) + V^\dagger\,\exp(-{\rm i}\,\omega\,t),$ where $$V$$ is, in general, a function of position, momentum, and spin operators.

It follows from Equations ([e13.48]) and ([e13.51]) that, to first-order, $c_f(t) = - \frac{\rm i}{\hbar}\int_0^t\left[V_{fi}\,\exp(\,{\rm i}\,\omega\,t') + V_{fi}^\dagger\,\exp(-{\rm i}\,\omega\,t')\right] \exp(\,{\rm i}\,\omega_{fi}\,t')\,dt',$ where

\begin{aligned} \label{e13.53} V_{fi}&= \langle f|V|i\rangle,\\[0.5ex] V_{fi}^\dagger &=\langle f|V^\dagger|i\rangle = \langle i|V|f\rangle^\ast.\end{aligned} Integration with respect to $$t'$$ yields \begin{aligned} c_f(t)&= - \frac{{\rm i}\,t}{\hbar}\left(V_{fi}\,\exp\left[\,{\rm i}\,(\omega+\omega_{fi})\,t/2\right]{\rm sinc}\left[(\omega+\omega_{fi})\,t/2\right]\right.\nonumber\\[0.5ex]& \left.\phantom{=}+V_{fi}^\dagger\,\exp\left[-{\rm i}\,(\omega-\omega_{fi})\,t/2\right]{\rm sinc}\left[(\omega-\omega_{fi})\,t/2\right]\right),\label{e13.55}\end{aligned} where ${\rm sinc}\, x\equiv \frac{\sin\,x}{x}.$

Figure 25: The functions $$$$\operatorname{sinc}(x)$$$$ (dashed curve) and $$$$\operatorname{sinc}^{2}(x)$$$$ (solid curve). The vertical dotted lines denote the region $$$$|x| \leq \pi$$$$

Now, the function $${\rm sinc}(x)$$ takes its largest values when $$$$|x| \lesssim \pi$$$$, and is fairly negligible when $$|x|\gg \pi$$. (See Figure [fsinc].) Thus, the first and second terms on the right-hand side of Equation ([e13.55]) are only non-negligible when

$$\left|\omega+\omega_{f i}\right| \lesssim \frac{2 \pi}{t}$$ and $$\left|\omega-\omega_{f i}\right| \lesssim \frac{2 \pi}{t}$$ respectively.

Clearly, as $$t$$ increases, the ranges in $$\omega$$ over which these two terms are non-negligible gradually shrink in size. Eventually, when $$t\gg 2\pi/|\omega_{fi}|$$, these two ranges become strongly non-overlapping. Hence, in this limit, $$P_{i\rightarrow f}=|c_f|^{\,2}$$ yields

$\label{e13.49} P_{i\rightarrow f}(t) = \frac{t^{\,2}}{\hbar^{\,2}}\left\{ |V_{fi}|^{\,2}\,{\rm sinc}^2\left[(\omega+\omega_{fi})\,t/2\right] + |V_{fi}^\dagger|^{\,2}\,{\rm sinc}^2\left[(\omega-\omega_{fi})\,t/2\right]\right\}.%\label{e13.59}$

Now, the function $${\rm sinc}^2(x)$$ is very strongly peaked at $$x=0$$, and is completely negligible for $$$$|x| \gg \pi$$$$. (See Figure [fsinc].) It follows that the previous expression exhibits a resonant response to the applied perturbation at the frequencies $$\omega=\pm\omega_{fi}$$. Moreover, the widths of these resonances decease linearly as time increases. At each of the resonances (i.e., at $$\omega=\pm\omega_{fi}$$), the transition probability $$P_{i\rightarrow f}(t)$$ varies as $$t^{\,2}$$ [because $${\rm sinh} (0)=1$$]. This behavior is entirely consistent with our earlier result ([e13.28]), for the two-state system, in the limit $$\gamma\,t\ll 1$$ (recall that our perturbative solution is only valid as long as $$P_{i\rightarrow f}\ll 1$$).

The resonance at $$\omega=-\omega_{fi}$$ corresponds to $E_f - E_i = -\hbar\,\omega.$ This implies that the system loses energy $$\hbar\,\omega$$ to the perturbing field, while making a transition to a final state whose energy is less than the initial state by $$\hbar\,\omega$$. This process is known as stimulated emission. The resonance at $$\omega=\omega_{fi}$$ corresponds to $E_f - E_i = \hbar\,\omega.$ This implies that the system gains energy $$\hbar\,\omega$$ from the perturbing field, while making a transition to a final state whose energy is greater than that of the initial state by $$\hbar\,\omega$$. This process is known as absorption.

Stimulated emission and absorption are mutually exclusive processes, because the first requires $$\omega_{fi}<0$$, whereas the second requires $$\omega_{fi}>0$$. Hence, we can write the transition probabilities for both processes separately. Thus, from Equation ([e13.49]), the transition probability for stimulated emission is $P_{i\rightarrow f}^{stm}(t) = \frac{t^{\,2}}{\hbar^{\,2}}\, |V_{if}^\dagger|^{\,2}\,{\rm sinc}^2\left[(\omega-\omega_{if})\,t/2\right],$ where we have made use of the facts that $$\omega_{if}=-\omega_{fi}>0$$, and $$|V_{fi}|^{\,2}=|V_{if}^\dagger|^{\,2}$$. Likewise, the transition probability for absorption is

$\label{e13.63} P_{i\rightarrow f}^{abs}(t) = \frac{t^{\,2}}{\hbar^{\,2}}\, |V_{fi}^\dagger|^{\,2}\,{\rm sinc}^2\left[(\omega-\omega_{fi})\,t/2\right].$

$$\newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}$$ $$\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}$$ $$\newcommand {\btau}{\mbox{\boldmath\tau}}$$ $$\newcommand {\bmu}{\mbox{\boldmath\mu}}$$ $$\newcommand {\bsigma}{\mbox{\boldmath\sigma}}$$ $$\newcommand {\bOmega}{\mbox{\boldmath\Omega}}$$ $$\newcommand {\bomega}{\mbox{\boldmath\omega}}$$ $$\newcommand {\bepsilon}{\mbox{\boldmath\epsilon}}$$