# 12.4: Perturbation Expansion

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Let us recall the analysis of Section 1.2. The $$\psi_n$$ are the stationary orthonormal eigenstates of the time-independent unperturbed Hamiltonian, $$H_0$$. Thus, $$H_0\,\psi_n=E_n\,\psi_n$$, where the $$E_n$$ are the unperturbed energy levels, and $$\langle n|m\rangle=\delta_{nm}$$. Now, in the presence of a small time-dependent perturbation to the Hamiltonian, $$H_1(t)$$, the wavefunction of the system takes the form $\psi(t)= \sum_n c_n(t)\,\exp(-{\rm i}\,\omega_n\,t)\,\psi_n,$ where $$\omega_n=E_n/\hbar$$. The amplitudes $$c_n(t)$$ satisfy

$\label{e13.42} {\rm i}\,\hbar\,\frac{d c_n}{dt} = \sum_m H_{nm}\,\exp(\,{\rm i}\,\omega_{nm}\,t)\,c_m,$ where $$H_{nm}(t)=\langle n|H_1(t)|m\rangle$$ and $$\omega_{nm}=(E_n-E_m)/\hbar$$. Finally, the probability of finding the system in the $$n$$th eigenstate at time $$t$$ is simply $P_n(t)= |c_n(t)|^{\,2}$ (assuming that, initially, $$\sum_n|c_n|^{\,2}=1$$).

Suppose that at $$t=0$$ the system is in some initial energy eigenstate labeled $$i$$. Equation ([e13.42]) is, thus, subject to the initial condition $c_n(0) = \delta_{ni}.$ Let us attempt a perturbative solution of Equation ([e13.42]) using the ratio of $$H_1$$ to $$H_0$$ (or $$H_{nm}$$ to $$\hbar\,\omega_{nm}$$, to be more exact) as our expansion parameter. Now, according to Equation ([e13.42]), the $$c_n$$ are constant in time in the absence of the perturbation. Hence, the zeroth-order solution is simply $c_n^{(0)} (t) = \delta_{ni}.$ The first-order solution is obtained, via iteration, by substituting the zeroth-order solution into the right-hand side of Equation ([e13.42]). Thus, we obtain ${\rm i}\,\hbar\,\frac{dc_n^{(1)}}{dt} = \sum_m H_{nm}\,\exp(\,{\rm i}\,\omega_{nm}\,t)\,c_m^{(0)} = H_{ni}\,\exp(\,{\rm i}\,\omega_{ni}\,t),$ subject to the boundary condition $$c^{(1)}_n(0)=0$$. The solution to the previous equation is $c_n^{(1)} = -\frac{\rm i}{\hbar}\int_0^t H_{ni}(t')\,\exp(\,{\rm i}\,\omega_{ni}\,t')\,dt'.$ It follows that, up to first-order in our perturbation expansion,

$\label{e13.48} c_n(t) = \delta_{ni} -\frac{\rm i}{\hbar}\int_0^t H_{ni}(t')\,\exp(\,{\rm i}\,\omega_{ni}\,t')\,dt'.$ Hence, the probability of finding the system in some final energy eigenstate labeled $$f$$ at time $$t$$, given that it is definitely in a different initial energy eigenstate labeled $$i$$ at time $$t=0$$, is $P_{i\rightarrow f}(t) =|c_f(t)|^{\,2} = \left| -\frac{\rm i}{\hbar}\int_0^t H_{fi}(t')\,\exp(\,{\rm i}\,\omega_{fi}\,t')\,dt'\right|^{\,2}.$ Note, finally, that our perturbative solution is clearly only valid provided $P_{i\rightarrow f}(t)\ll 1.$

$$\newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}$$ $$\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}$$ $$\newcommand {\btau}{\mbox{\boldmath\tau}}$$ $$\newcommand {\bmu}{\mbox{\boldmath\mu}}$$ $$\newcommand {\bsigma}{\mbox{\boldmath\sigma}}$$ $$\newcommand {\bOmega}{\mbox{\boldmath\Omega}}$$ $$\newcommand {\bomega}{\mbox{\boldmath\omega}}$$ $$\newcommand {\bepsilon}{\mbox{\boldmath\epsilon}}$$