Skip to main content
Physics LibreTexts

12.4: Perturbation Expansion

  • Page ID
    15802
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Let us recall the analysis of Section 1.2. The \(\psi_n\) are the stationary orthonormal eigenstates of the time-independent unperturbed Hamiltonian, \(H_0\). Thus, \(H_0\,\psi_n=E_n\,\psi_n\), where the \(E_n\) are the unperturbed energy levels, and \(\langle n|m\rangle=\delta_{nm}\). Now, in the presence of a small time-dependent perturbation to the Hamiltonian, \(H_1(t)\), the wavefunction of the system takes the form \[\psi(t)= \sum_n c_n(t)\,\exp(-{\rm i}\,\omega_n\,t)\,\psi_n,\] where \(\omega_n=E_n/\hbar\). The amplitudes \(c_n(t)\) satisfy

    \[\label{e13.42} {\rm i}\,\hbar\,\frac{d c_n}{dt} = \sum_m H_{nm}\,\exp(\,{\rm i}\,\omega_{nm}\,t)\,c_m,\] where \(H_{nm}(t)=\langle n|H_1(t)|m\rangle\) and \(\omega_{nm}=(E_n-E_m)/\hbar\). Finally, the probability of finding the system in the \(n\)th eigenstate at time \(t\) is simply \[P_n(t)= |c_n(t)|^{\,2}\] (assuming that, initially, \(\sum_n|c_n|^{\,2}=1\)).

    Suppose that at \(t=0\) the system is in some initial energy eigenstate labeled \(i\). Equation ([e13.42]) is, thus, subject to the initial condition \[c_n(0) = \delta_{ni}.\] Let us attempt a perturbative solution of Equation ([e13.42]) using the ratio of \(H_1\) to \(H_0\) (or \(H_{nm}\) to \(\hbar\,\omega_{nm}\), to be more exact) as our expansion parameter. Now, according to Equation ([e13.42]), the \(c_n\) are constant in time in the absence of the perturbation. Hence, the zeroth-order solution is simply \[c_n^{(0)} (t) = \delta_{ni}.\] The first-order solution is obtained, via iteration, by substituting the zeroth-order solution into the right-hand side of Equation ([e13.42]). Thus, we obtain \[{\rm i}\,\hbar\,\frac{dc_n^{(1)}}{dt} = \sum_m H_{nm}\,\exp(\,{\rm i}\,\omega_{nm}\,t)\,c_m^{(0)} = H_{ni}\,\exp(\,{\rm i}\,\omega_{ni}\,t),\] subject to the boundary condition \(c^{(1)}_n(0)=0\). The solution to the previous equation is \[c_n^{(1)} = -\frac{\rm i}{\hbar}\int_0^t H_{ni}(t')\,\exp(\,{\rm i}\,\omega_{ni}\,t')\,dt'.\] It follows that, up to first-order in our perturbation expansion,

    \[\label{e13.48} c_n(t) = \delta_{ni} -\frac{\rm i}{\hbar}\int_0^t H_{ni}(t')\,\exp(\,{\rm i}\,\omega_{ni}\,t')\,dt'.\] Hence, the probability of finding the system in some final energy eigenstate labeled \(f\) at time \(t\), given that it is definitely in a different initial energy eigenstate labeled \(i\) at time \(t=0\), is \[P_{i\rightarrow f}(t) =|c_f(t)|^{\,2} = \left| -\frac{\rm i}{\hbar}\int_0^t H_{fi}(t')\,\exp(\,{\rm i}\,\omega_{fi}\,t')\,dt'\right|^{\,2}.\] Note, finally, that our perturbative solution is clearly only valid provided \[P_{i\rightarrow f}(t)\ll 1.\]

    Contributors and Attributions

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 12.4: Perturbation Expansion is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?