Skip to main content
Physics LibreTexts

14.3: Partial Waves

  • Page ID
    15815
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We can assume, without loss of generality, that the incident wavefunction is characterized by a wavevector \({\bf k}\) that is aligned parallel to the \(z\)-axis. The scattered wavefunction is characterized by a wavevector \({\bf k}'\) that has the same magnitude as \({\bf k}\), but, in general, points in a different direction. The direction of \({\bf k}'\) is specified by the polar angle \(\theta\) (i.e., the angle subtended between the two wavevectors), and an azimuthal angle \(\phi\) about the \(z\)-axis. Equations ([e17.38]) and ([e17.39]) strongly suggest that for a spherically symmetric scattering potential [i.e., \(V({\bf r}) = V(r)\)] the scattering amplitude is a function of \(\theta\) only: that is, \[f(\theta, \phi) = f(\theta).\] It follows that neither the incident wavefunction,

    \[\label{e17.52} \psi_0({\bf r}) = \sqrt{n}\,\exp(\,{\rm i}\,k\,z)= \sqrt{n}\,\exp(\,{\rm i}\,k\,r\cos\theta),\] nor the large-\(r\) form of the total wavefunction,

    \[\label{e17.53} \psi({\bf r}) = \sqrt{n} \left[ \exp(\,{\rm i}\,k\,r\cos\theta) + \frac{\exp(\,{\rm i}\,k\,r)\, f(\theta)} {r} \right],\] depend on the azimuthal angle \(\phi\).

    Outside the range of the scattering potential, both \(\psi_0({\bf r})\) and \(\psi({\bf r})\) satisfy the free-space Schrödinger equation,

    \[\label{e17.54} (\nabla^{\,2} + k^{\,2})\,\psi = 0.\] What is the most general solution to this equation in spherical polar coordinates that does not depend on the azimuthal angle \(\phi\)? Separation of variables yields

    \[\label{e17.55} \psi(r,\theta) = \sum_l R_l(r)\, P_l(\cos\theta),\] because the Legendre functions, \(P_l(\cos\theta)\), form a complete set in \(\theta\)-space. The Legendre functions are related to the spherical harmonics, introduced in Chapter [sorb], via \[P_l(\cos\theta) = \sqrt{\frac{4\pi}{2\,l+1}}\, Y_{l,0}(\theta,\varphi).\] Equations ([e17.54]) and ([e17.55]) can be combined to give

    \[r^{\,2}\,\frac{d^{\,2} R_l}{dr^{\,2}} + 2\,r \,\frac{dR_l}{dr} + [k^{\,2} \,r^{\,2} - l\,(l+1)]\,R_l = 0.\] The two independent solutions to this equation are the spherical Bessel functions, \(j_l(k\,r)\) and \(y_l(k\,r)\), introduced in Section [rwell]. Recall that

    \[\begin{aligned} \label{e17.58a} j_l(z) &= z^{\,l}\left(-\frac{1}{z}\frac{d}{dz}\right)^l\left( \frac{\sin z}{z}\right), \\[0.5ex]\label{e17.58b} y_l(z) &= -z^{\,l}\left(-\frac{1}{z}\frac{d}{dz}\right)^l \left(\frac{\cos z}{z}\right).\end{aligned}\] Note that the \(j_l(z)\) are well behaved in the limit \(z\rightarrow 0\) , whereas the \(y_l(z)\) become singular. The asymptotic behavior of these functions in the limit \(z\rightarrow \infty\) is

    \[\begin{aligned} \label{e17.59a} j_l(z) &\rightarrow \frac{\sin(z - l\,\pi/2)}{z},\\[0.5ex] y_l(z) &\rightarrow - \frac{\cos(z-l\,\pi/2)}{z}.\label{e17.59b}\end{aligned}\]

    We can write \[\exp(\,{\rm i}\,k\,r \cos\theta) = \sum_l a_l\, j_l(k\,r)\, P_l(\cos\theta),\] where the \(a_l\) are constants. Note there are no \(y_l(k\,r)\) functions in this expression because they are not well-behaved as \(r \rightarrow 0\). The Legendre functions are orthonormal ,

    \[\label{e17.61} \int_{-1}^1 P_n(\mu) \,P_m(\mu)\,d\mu = \frac{\delta_{nm}}{n+1/2},\] so we can invert the previous expansion to give \[a_l \,j_l(k\,r) = (l+1/2)\int_{-1}^1 \exp(\,{\rm i}\,k\,r \,\mu) \,P_l(\mu) \,d\mu.\] It is well known that \[j_l(y) = \frac{(-{\rm i})^{\,l}}{2} \int_{-1}^1 \exp(\,{\rm i}\, y\,\mu) \,P_l(\mu)\,d\mu,\] where \(l=0, 1, 2, \cdots\) . Thus, \[a_l = {\rm i}^{\,l} \,(2\,l+1),\] giving

    \[\label{e15.49} \psi_0({\bf r}) = \sqrt{n}\,\exp(\,{\rm i}\,k\,r \cos\theta) =\sqrt{n}\, \sum_l {\rm i}^{\,l}\,(2\,l+1)\, j_l(k\,r)\, P_l(\cos\theta).\] The previous expression tells us how to decompose the incident plane-wave into a series of spherical waves. These waves are usually termed “partial waves”.

    The most general expression for the total wavefunction outside the scattering region is \[\psi({\bf r}) = \sqrt{n}\sum_l\left[ A_l\,j_l(k\,r) + B_l\,y_l(k\,r)\right] P_l(\cos\theta),\] where the \(A_l\) and \(B_l\) are constants. Note that the \(y_l(k\,r)\) functions are allowed to appear in this expansion because its region of validity does not include the origin. In the large-\(r\) limit, the total wavefunction reduces to \[\psi ({\bf r} ) \simeq \sqrt{n} \sum_l\left[A_l\, \frac{\sin(k\,r - l\,\pi/2)}{k\,r} - B_l\,\frac{\cos(k\,r -l\,\pi/2)}{k\,r} \right] P_l(\cos\theta),\] where use has been made of Equations ([e17.59a]) and ([e17.59b]). The previous expression can also be written

    \[\label{e17.68} \psi ({\bf r} ) \simeq \sqrt{n} \sum_l C_l\, \frac{\sin(k\,r - l\,\pi/2+ \delta_l)}{k\,r}\, P_l(\cos\theta),\] where the sine and cosine functions have been combined to give a sine function which is phase-shifted by \(\delta_l\). Note that \(A_l=C_l\,\cos\delta_l\) and \(B_l=-C_l\,\sin\delta_l\).

    Equation ([e17.68]) yields \[\psi({\bf r}) \simeq \sqrt{n} \sum_l C_l\left[ \frac{{\rm e}^{\,{\rm i}\,(k\,r - l\,\pi/2+ \delta_l)} -{\rm e}^{-{\rm i}\,(k\,r - l\,\pi/2+ \delta_l)} }{2\,{\rm i}\,k\,r} \right] P_l(\cos\theta),\label{e17.69}\] which contains both incoming and outgoing spherical waves. What is the source of the incoming waves? Obviously, they must be part of the large-\(r\) asymptotic expansion of the incident wavefunction. In fact, it is easily seen from Equations ([e17.59a]) and ([e15.49]) that

    \[\psi_0({\bf r}) \simeq \sqrt{n} \sum_l {\rm i}^{\,l}\, (2l+1)\left[\frac{ {\rm e}^{\,{\rm i}\,(k\,r - l\,\pi/2)} -{\rm e}^{-{\rm i}\,(k\,r - l\,\pi/2)}}{2\,{\rm i}\,k\,r} \right]P_l(\cos\theta)\label{e17.70}\] in the large-\(r\) limit. Now, Equations ([e17.52]) and ([e17.53]) give

    \[\label{e17.71} \frac{\psi({\bf r} )- \psi_0({\bf r}) }{ \sqrt{n}} = \frac{\exp(\,{\rm i}\,k\,r)}{r}\, f(\theta).\] Note that the right-hand side consists of an outgoing spherical wave only. This implies that the coefficients of the incoming spherical waves in the large-\(r\) expansions of \(\psi({\bf r})\) and \(\psi_0({\bf r})\) must be the same. It follows from Equations ([e17.69]) and ([e17.70]) that \[C_l = (2\,l+1)\,\exp[\,{\rm i}\,(\delta_l + l\,\pi/2)].\] Thus, Equations ([e17.69])–([e17.71]) yield

    \[\label{e17.73} f(\theta) = \sum_{l=0,\infty} (2\,l+1)\,\frac{\exp(\,{\rm i}\,\delta_l)} {k} \,\sin\delta_l\,P_l(\cos\theta).\] Clearly, determining the scattering amplitude, \(f(\theta)\), via a decomposition into partial waves (i.e., spherical waves) is equivalent to determining the phase-shifts, \(\delta_l\).

    Now, the differential scattering cross-section, \(d\sigma/d{\mit\Omega}\), is simply the modulus squared of the scattering amplitude, \(f(\theta)\). [See Equation ([e15.17]).] The total cross-section is thus given by \[\begin{aligned} \sigma_{\rm total}& = \int |f(\theta)|^{\,2}\,d{\mit\Omega}\\[0.5ex] &= \frac{1}{k^{\,2}} \oint d\phi \int_{-1}^{1} d\mu \sum_l \sum_{l'} (2\,l+1)\,(2\,l'+1) \exp[\,{\rm i}\,(\delta_l-\delta_{l'})]\, \sin\delta_l \,\sin\delta_{l'}\, P_l(\mu)\, P_{l'}(\mu),\nonumber\end{aligned}\] where \(\mu = \cos\theta\). It follows that \[\label{e17.75} \sigma_{\rm total} = \frac{4\pi}{k^{\,2}} \sum_l (2\,l+1)\,\sin^2\delta_l,\] where use has been made of Equation ([e17.61]).

    Contributors and Attributions

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 14.3: Partial Waves is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?