Skip to main content
Physics LibreTexts

14.2: Born Approximation

  • Page ID
    15814
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Equation ([e15.17]) is not particularly useful, as it stands, because the quantity \(f({\bf k},{\bf k}')\) depends on the, as yet, unknown wavefunction \(\psi({\bf r})\). [See Equation ([e5.12]).] Suppose, however, that the scattering is not particularly strong. In this case, it is reasonable to suppose that the total wavefunction, \(\psi({\bf r})\), does not differ substantially from the incident wavefunction, \(\psi_0({\bf r})\). Thus, we can obtain an expression for \(f({\bf k},{\bf k}')\) by making the substitution \(\psi({\bf r})\rightarrow\psi_0({\bf r}) = \sqrt{n}\,\exp(\,{\rm i}\, {\bf k}\cdot{\bf r})\) in Equation ([e5.12]). This procedure is called the Born approximation .

    The Born approximation yields \[f({\bf k},{\bf k}') \simeq \frac{m}{2\pi\,\hbar^{\,2}} \int {\rm e}^{\,{\rm i}\,({\bf k}-{\bf k'})\cdot{\bf r}'}\,V({\bf r'})\,d^{\,3}{\bf r}'.\] Thus, \(f({\bf k},{\bf k}')\) becomes proportional to the Fourier transform of the scattering potential \(V({\bf r})\) with respect to the wavevector \({\bf q} = {\bf k}-{\bf k}'\).

    For a spherically symmetric potential, \[f({\bf k}', {\bf k}) \simeq - \frac{m}{2\pi\, \hbar^{\,2}} \int\!\int\!\int \exp(\,{\rm i} \, q \,r'\cos\theta') \, V(r')\,r'^{\,2}\, dr'\,\sin\theta' \,d\theta'\,d\phi',\] giving \[\label{e17.38} f({\bf k}', {\bf k}) \simeq - \frac{2\,m}{\hbar^{\,2}\,q} \int_0^\infty r' \,V(r') \sin(q \,r') \,dr'.\] Note that \(f({\bf k}', {\bf k})\) is just a function of \(q\) for a spherically symmetric potential. It is easily demonstrated that \[\label{e17.39} q \equiv |{\bf k} - {\bf k}'| = 2\, k \,\sin (\theta/2),\] where \(\theta\) is the angle subtended between the vectors \({\bf k}\) and \({\bf k}'\). In other words, \(\theta\) is the scattering angle. Recall that the vectors \({\bf k}\) and \({\bf k}'\) have the same length, via energy conservation.

    Consider scattering by a Yukawa potential ,

    \[\label{e10.35ee} V(r) = \frac{V_0\,\exp(-\mu \,r)}{\mu \,r},\] where \(V_0\) is a constant, and \(1/\mu\) measures the “range” of the potential. It follows from Equation ([e17.38]) that \[f(\theta) = - \frac{2\,m \,V_0}{\hbar^{\,2}\,\mu} \frac{1}{q^{\,2} + \mu^{\,2}},\] because \[\int_0^\infty \exp(-\mu \,r') \,\sin(q\,r') \, dr' = \frac{q}{q^{\,2}+ \mu^{\,2}}.\] Thus, in the Born approximation, the differential cross-section for scattering by a Yukawa potential is \[\frac{d\sigma}{d {\mit\Omega}} \simeq \left(\frac{2\,m \,V_0}{ \hbar^{\,2}\,\mu}\right)^2 \frac{1}{[2\,k^{\,2}\, (1-\cos\theta) + \mu^{\,2}]^{\,2}},\] given that \[q^{\,2} = 4\,k^{\,2}\, \sin^2(\theta/2) = 2\,k^{\,2}\, (1-\cos\theta).\]

    The Yukawa potential reduces to the familiar Coulomb potential as \(\mu \rightarrow 0\), provided that \(V_0/\mu \rightarrow Z\,Z'\, e^{\,2} / (4\pi\,\epsilon_0)\). In this limit, the Born differential cross-section becomes \[\frac{d\sigma}{d{\mit\Omega}} \simeq \left(\frac{2\,m \,Z\, Z'\, e^{\,2}}{4\pi\,\epsilon_0\,\hbar^{\,2}}\right)^2 \frac{1}{ 16 \,k^{\,4}\, \sin^4( \theta/2)}.\] Recall that \(\hbar\, k\) is equivalent to \(|{\bf p}|\), so the previous equation can be rewritten \[\label{e17.46} \frac{d\sigma}{d{\mit\Omega}} \simeq\left(\frac{Z \,Z'\, e^{\,2}}{16\pi\,\epsilon_0\,E}\right)^2 \frac{1}{\sin^4(\theta/2)},\] where \(E= p^{\,2}/2\,m\) is the kinetic energy of the incident particles. Of course, Equation ([e17.46]) is identical to the famous Rutherford scattering cross-section formula of classical physics .

    The Born approximation is valid provided that \(\psi({\bf r})\) is not too different from \(\psi_0({\bf r})\) in the scattering region. It follows, from Equation ([e15.9]), that the condition for \(\psi({\bf r}) \simeq \psi_0({\bf r})\) in the vicinity of \({\bf r} = {\bf 0}\) is \[\label{e17.47} \left| \frac{m}{2\pi\, \hbar^{\,2}} \int \frac{ \exp(\,{\rm i}\, k \,r')}{r'} \,V({\bf r}')\,d^{\,3}{\bf r'} \right| \ll 1.\] Consider the special case of the Yukawa potential. At low energies, (i.e., \(k\ll \mu\)) we can replace \(\exp(\,{\rm i}\,k\, r')\) by unity, giving \[\frac{2\,m}{\hbar^{\,2}} \frac{|V_0|}{\mu^{\,2}} \ll 1\] as the condition for the validity of the Born approximation. The condition for the Yukawa potential to develop a bound state is \[\frac{2\,m}{\hbar^{\,2}} \frac{|V_0|} {\mu^{\,2}} \geq 2.7,\] where \(V_0\) is negative . Thus, if the potential is strong enough to form a bound state then the Born approximation is likely to break down. In the high-\(k\) limit, Equation ([e17.47]) yields \[\frac{2\,m}{\hbar^{\,2}} \frac{|V_0|}{\mu \,k} \ll 1.\] This inequality becomes progressively easier to satisfy as \(k\) increases, implying that the Born approximation is more accurate at high incident particle energies.

    Contributors and Attributions

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 14.2: Born Approximation is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?