Skip to main content

# 3.9: Appendix- Some Exponential Operator Algebra

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Suppose that the commutator of two operators $$A$$,$$B$$

$[A,B]=c, \label{3.6.50}$

where $$c$$ commutes with $$A$$ and $$B$$, usually it’s just a number, for instance 1 or $$i\hbar$$.

Then

\begin{align} [A,e^{\lambda B}] &= \left[A,1+\lambda B+ \left(\dfrac{\lambda^2}{2!} \right)B^2+ \left(\dfrac{\lambda^3}{3!}\right)B^3+\dots\right] \\[5pt] &= \lambda c+ \left(\dfrac{\lambda^2}{2!}\right)2Bc+ \left(\dfrac{\lambda^3}{3!}\right)3B^2c+\dots \\[5pt] &= \lambda ce^{\lambda B}. \label{3.6.51} \end{align}

That is to say, the commutator of $$A$$ with $$e^{\lambda B}$$ is proportional to $$e^{\lambda B}$$ itself. That is reminiscent of the simple harmonic oscillator commutation relation $$[H,a^{\dagger}]=\hbar\omega a^{\dagger}$$ which led directly to the ladder of eigenvalues of $$H$$ separated by $$\hbar\omega$$. Will there be a similar “ladder” of eigenstates of $$A$$ in general?

Assuming $$A$$ (which is a general operator) has an eigenstate $$|a\rangle$$ with eigenvalue $$a$$,

$A|a\rangle=a|a\rangle. \label{3.6.52}$

Applying $$[A,e^{\lambda B}]=\lambda ce^{\lambda B}$$ to the eigenstate $$|a\rangle$$:

$Ae^{\lambda B}|a\rangle=e^{\lambda B}A|a\rangle+\lambda ce^{\lambda B}|a\rangle=(a+\lambda c)|a\rangle. \label{3.6.53}$

Therefore, unless it is identically zero, $$e^{\lambda B}|a\rangle$$ is also an eigenstate of $$A$$, with eigenvalue $$a+\lambda c$$. We conclude that instead of a ladder of eigenstates, we can apparently generate a whole continuum of eigenstates, since $$\lambda$$ can be set arbitrarily!

To find more operator identities, premultiply $$[A,e^{\lambda B}]=\lambda ce^{\lambda B}$$ by $$e^{-\lambda B}$$ to find:

\begin{align*} e^{-\lambda B}Ae^{\lambda B} &= A+\lambda[A,B] \\[4pt] &=A+\lambda c. \label{3.6.54}\end{align*}

This identity is only true for operators $$A$$,$$B$$ whose commutator $$c$$ is a number. (Well, $$c$$ could be an operator, provided it still commutes with both $$A$$ and $$B$$ ).

Our next task is to establish the following very handy identity, which is also only true if $$[A,B]$$ commutes with $$A$$ and $$B$$:

$e^{A+B}=e^Ae^Be-\frac{1}{2}[A,B]. \label{3.6.55}$

The proof is as follows:

Proof

Take $$f(x)=e^{Ax}e^{Bx}$$,

\begin{align*} \frac{df}{dx} &=Ae^{Ax}e^{Bx}+e^{Ax}e^{Bx}B \\[4pt] &=f(x)(e^{-Bx}Ae^{Bx}+B) \\[4pt] &=f(x)(A+x[A,B]+B). \end{align*}

It is easy to check that the solution to this first-order differential equation equal to one at $$x=0$$ is

$f(x)=e^{x(A+B)}e^{\frac{1}{2}x^2[A,B]} \nonumber$

so taking $$x=1$$ gives the required identity,

$e^{A+B}=e^Ae^Be^{-\frac{1}{2}[A,B]}. \nonumber$

$$\square$$

It also follows that $$e^Be^A=e^Ae^Be^{-[A,B]}$$ provided—as always—that $$[A,B]$$ commutes with $$A$$ and $$B$$.

## Contributor

This page titled 3.9: Appendix- Some Exponential Operator Algebra is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler via source content that was edited to the style and standards of the LibreTexts platform.

• Was this article helpful?