Skip to main content
\(\require{cancel}\)
Physics LibreTexts

3.2: Operators

  • Page ID
    14761
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Notice that in deriving the wave equation we replaced the number \(p\) or \(k\) by a differential acting on the wavefunction. The energy (or rather the Hamiltonian) was replaced by an ”operator”, which when multiplied with the wave function gives a combination of derivatives of the wavefunction and function multiplying the wavefunction, symbolically written as

    \[\hat{H} ψ(x,t) = − \dfrac{\hbar^2}{2 m} \dfrac{∂^2}{∂ x^2} ψ(x,t) + V(x) ψ ( x , t ) . \label{3.16}\]

    This appearance of operators (often denoted by hats) where we were used to see numbers is one of the key features of quantum mechanics.


    3.2: Operators is shared under a CC BY-NC-SA 2.0 license and was authored, remixed, and/or curated by Niels Walet via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.