Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

10.4: Simple Example

( \newcommand{\kernel}{\mathrm{null}\,}\)

The best way to clarify this abstract discussion is to consider the quantum mechanics of the Harmonic oscillator of mass m and frequency \omega,

\hat{H}=-\frac{\hbar^2}{2 m} \frac{d^2}{d x^2}+\frac{1}{2} m \omega^2 x^2

If we assume that the wave function at time t=0 is a linear superposition of the first two eigenfunctions,

\begin{aligned} \psi(x, t=0) & =\sqrt{\frac{1}{2}} \phi_0(x)-\sqrt{\frac{1}{2}} \phi_1(x) \\[8pt] \phi_0(x) & =\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{m \omega}{2 \hbar} x^2\right) \\[8pt] \phi_1(x) & =\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{m \omega}{2 \hbar} x^2\right) \sqrt{\frac{m \omega}{\hbar}} x \end{aligned}

(The functions \phi_0 and \phi_1 are the normalised first and second states of the harmonic oscillator, with energies E_0=\frac{1}{2} \hbar \omega and E_1=\frac{3}{2} \hbar \omega.) Thus we now kow the wave function for all time:

\psi(x, t)=\sqrt{\frac{1}{2}} \phi_0(x) e^{-\frac{1}{2} i \omega t}-\sqrt{\frac{1}{2}} \phi_1(x) e^{-\frac{3}{2} i \omega t} .

In figure \PageIndex{1} we plot this quantity for a few times.

The best way to visualize what is happening is to look at the probability density,

\begin{aligned} \mathcal{P}(x, t) & =\psi(x, t)^* \psi(x, t) \\ & =\frac{1}{2}\left(\phi_0(x)^2+\phi_1(x)^2-2 \phi_0(x) \phi_1(x) \cos \omega t\right) \end{aligned}

This clearly oscillates with frequency \omega.

Question: Show that \int_{-\infty}^{\infty} \mathcal{P}(x, t) d x=1.

clipboard_e429ef8f0ed28ca0d787504a71cee45cf.png
Figure \PageIndex{1}: The wave function (10.10) for a few values of the time t. The solid line is the real part, and the dashed line the imaginary part.

Another way to look at that is to calculate the expectation value of \hat{x} :

\begin{aligned} \langle\hat{x}\rangle & =\int_{-\infty}^{\infty} \mathcal{P}(x, t) d x \\[8pt] & =\frac{1}{2} \underbrace{\int_{-\infty}^{\infty} \phi_0(x)^2 x d x}_{=0}+\frac{1}{2} \underbrace{\int_{-\infty}^{\infty} \phi_1(x)^2 x d x}_{=0}-\cos \omega t \int_{-\infty}^{\infty} \phi_0(x) \phi_1(x) x d x \\[8pt] & =-\cos \omega t \sqrt{\frac{\hbar}{m \omega}} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} y^2 e^{-y^2} \\[8pt] & =-\frac{1}{2} \sqrt{\frac{\hbar}{m \omega}} \cos \omega t . \end{aligned} 


This once again exhibits oscillatory behaviour!


This page titled 10.4: Simple Example is shared under a CC BY-NC-SA 2.0 license and was authored, remixed, and/or curated by Niels Walet via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?