Skip to main content
Physics LibreTexts

5.5: Exercises

  • Page ID
    34663
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercises

    Exercise \(\PageIndex{1}\)

    In Section 5.3, we derived the vector potential operator, in an infinite volume, to be

    \[\hat{\mathbf{A}}(\mathbf{r},t) = \int d^3k \sum_{\lambda} \sqrt{\frac{\hbar}{16\pi^3\epsilon_0\omega_{\mathbf{k}}}}\, \Big(\hat{a}_{\mathbf{k}\lambda} \, e^{i(\mathbf{k}\cdot\mathbf{r} - \omega_{\mathbf{k}} t)} + \mathrm{h.c.}\Big)\, \mathbf{e}_{\mathbf{k}\lambda}.\]

    Since \([\hat{a}_{\mathbf{k}\lambda}, \hat{a}^\dagger_{\mathbf{k}'\lambda'}] = \delta^3(\mathbf{k}-\mathbf{k}') \delta_{\lambda\lambda'}\), the creation and annihilation operators each have units of \([x^{3/2}]\). Prove that \(\hat{\mathbf{A}}\) has the same units as the classical vector potential.

    Exercise \(\PageIndex{2}\)

    Repeat the spontaneous decay rate calculation from Section 5.4 using the finite-volume versions of the creation/annihilation operators and the vector potential operator (5.4.3). Show that it yields the same result (5.4.16).

    Exercise \(\PageIndex{3}\)

    The density of photon states at energy \(E\) is defined as

    \[\mathcal{D}(E) = 2\int d^3k\; \delta(E-E_{\mathbf{k}}),\]

    where \(E_{\mathbf{k}} = \hbar c |\mathbf{k}|\). Note the factor of 2 accounting for the polarizations. Prove that

    \[\mathcal{D}(E) = \frac{8\pi E^2}{\hbar^3c^3},\]

    and show that \(\mathcal{D}(E)\) has units of \([E^{-1}V^{-1}]\).

    Further Reading

    [1] F. J. Dyson, 1951 Lectures on Advanced Quantum Mechanics Second Edition, arxiv:quant-ph/0608140.

    [2] A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, 2010). [cite:zee]

    [3] L. L. Foldy and S. A. Wouthuysen, On the Dirac Theory of Spin \(1/2\) Particles and Its Non-Relativistic Limit, Physical Review 78, 29 (1950).


    This page titled 5.5: Exercises is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?