Skip to main content
Physics LibreTexts

1.6: Example of matrix representation method and choice of basis

  • Page ID
    28665
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In practical quantum problems, we almost always describe the state of the system in terms of some basis set. Consider a simple spin 1/2 system, choosing as basis states \(S_z = \pm \frac{1}{2}\). Consider this system in a magnetic field pointing in the \(x\) direction, the operator corresponding to this is \(\mu B \hat{S}_x\). We wish to find the eigenstates and eigenenergies.

    Evaluating the required matrix elements such as \(\langle S_z = \frac{1}{2} |\mu B\hat{S}_x | S_z = \frac{1}{2} \rangle\) (see QP3) gives a matrix:

    \[\begin{pmatrix} 0 & \mu B/2 \\ \mu B/2 & 0 \end{pmatrix} \nonumber\]

    The normalised eigenvectors of this matrix are \((\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}})\) and \((\sqrt{\frac{1}{2}}, -\sqrt{\frac{1}{2}})\) with eigenvalues \((\mu B/2)\) and \((-\mu B/2)\). Of course these represent the eigenstates \(|S_x = \pm \frac{1}{2} \rangle\) in the basis of \(|S_z = \pm \frac{1}{2} \rangle\):

    \[|S_x = \pm \frac{1}{2} \rangle = \left[|S_z = \frac{1}{2} \rangle \pm |S_z = -\frac{1}{2} \rangle \right] / \sqrt{2} \nonumber\]

    Had we chosen \(|S_y = \pm \frac{1}{2} \rangle\) as our basis set, then the matrix would have been:

    \[\begin{pmatrix} 0 & -i\mu B/2 \\ i\mu B/2 & 0 \end{pmatrix} \nonumber\]

    Once again, the eigenvalues of this matrix are \((\mu B/2)\) and \((-\mu B/2)\), as they must be since these are the measurable quantities. Coincidently, the eigenvectors in this basis set are also \((\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}})\) and \((\sqrt{\frac{1}{2}}, -\sqrt{\frac{1}{2}})\).

    Had we chosen \(|S_x = \pm \frac{1}{2} \rangle\) as our basis set in the first place, the problem would have been much simplified. The matrix would then be:

    \[\begin{pmatrix} \mu B/2 & 0 \\ 0 & -\mu B/2 \end{pmatrix} \nonumber\]

    Once again, the eigenvalues of this matrix are \((\mu B/2)\) and \((-\mu B/2)\), and now the eigenvectors are (1,0) and (0,1): i.e. the eigenstates are simply the basis states.


    This page titled 1.6: Example of matrix representation method and choice of basis is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.