Skip to main content
Physics LibreTexts

1.8: Using Bras to pick Kets

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    One of the most useful algebraic tricks in quantum mechanics is to multiply a sum of terms by a complex conjugate wavefunction, and integrate the product over all space. Orthogonality often means that this procedure can be used to ‘pick’ a single term from the sum. In Dirac notation this procedure simply becomes applying \(\langle i_m|\).

    For example, if we have an expansion of a mixed state \(\Phi\) in eigenstates in: \(\hat{H} |\Phi \rangle = \sum _n \hat{H} | i_n \rangle \langle i_n | \Phi \rangle\), we can remove the sum by \(\langle i_m|\):

    \[\langle i_m | \hat{H} | \Phi \rangle = \langle i_m | \sum_n \hat{H} | i_n \rangle \langle i_n | \Phi \rangle = E_m \langle i_m | \Phi \rangle \nonumber\]

    This works because \(\langle i_m | \hat{H} | i_n = E_m \delta_{nm}\); it is analogous to taking components of a vector.

    This page titled 1.8: Using Bras to pick Kets is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.