5.1: Time–Dependent Hamiltonians

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Recall that for a system described by a Hamiltonian, $$\hat{H}_0$$, which is time–independent, the most general state of the system can be described by a wavefunction $$|\Psi , t \rangle$$ which can be expanded in the energy eigenbasis $$\{|n \rangle \}$$ as follows:

$|\Psi , t\rangle = \sum_n c_n \text{ exp}(−iE_nt/\hbar )|n\rangle \nonumber$

where the coefficients, $$c_n$$, are time-independent, and $$E_n$$ denotes the eigenvalue corresponding to the energy eigenstate $$|n \rangle$$ of $$\hat{H}_0$$.

When we generalise to the case where the Hamiltonian is of the form

$\hat{H} = \hat{H}_0 + \hat{V} (t) \nonumber$

we can again expand in $$|n \rangle$$, the time-independent eigenbasis of $$\hat{H}_0$$

$|\Psi , t\rangle = \sum_n c_n(t) \text{ exp}(−iE_nt/\hbar )|n\rangle \nonumber$

but the coefficients, $$c_n$$, will now in general be time-dependent.

The wavefunction satisfies the time-dependent Schrödinger equation;

$i\hbar \frac{\partial}{\partial t} |\Psi , t \rangle = \hat{H} |\Psi , t\rangle \nonumber$

so that we can substitute the expansion of $$|\Psi , t\rangle$$ to determine the equations satisfied by the coefficients $$c_n(t)$$. Writing $$E_n = \hbar \omega_n$$ and denoting the time derivative of $$c_n$$ by $$\dot{c}_n$$ we obtain

$i\hbar \sum_n (\dot{c}_n − i\omega_n c_n) \text{ exp}(−i\omega_n t)|n \rangle = \sum_n (c_n \hbar \omega_n + c_n\hat{V} ) \text{ exp}(−i\omega_nt)|n \rangle \nonumber$

which simplifies immediately to give

$\sum_n (i\hbar \dot{c}_n − c_n\hat{V} ) \text{ exp}(−i\omega_n t)|n \rangle = 0 \nonumber$

We now premultiply this equation with another eigenstate of $$\hat{H} 0, \langle m|$$, to give

$i\hbar \dot{c}_m \text{ exp}(−i\omega_m t) − \sum_n c_n V_{mn} \text{ exp}(−i\omega_nt) = 0 \nonumber$

giving the following set of coupled, first–order differential equations for the coefficients:

$\boxed{i\hbar \dot{c}_m = {\sum}_n c_nV_{mn} \text{ exp}(i\omega_{mn}t)} \nonumber$

where $$\omega_{mn} = \omega_m − \omega_n$$ and $$V_{mn} = \langle m|\hat{V} |n \rangle$$.

This tells us how the coefficient $$c_m$$ varies with time, i.e. the probability that a measurement will show the system to be in the $$m^{th}$$ eigenstate. It is exact, but not terribly useful because we must, in general, solve an infinite set of coupled differential equations.

It is worth dwelling on the importance of the quantity $$V_{mn}$$. This ‘matrix element’ is an integral which tells us how much the potential $$\hat{V}$$ mixes states $$|m \rangle$$ and $$|n\rangle$$. If it is zero (which it often is, by symmetry) then $$\hat{V}$$ cannot induce a transition between states $$|m \rangle$$ and $$|n\rangle$$.

This page titled 5.1: Time–Dependent Hamiltonians is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.