# 8.8: Kohn-Sham functional

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

For solids, we have $$10^{26}$$ electron states. Analytic solution becomes impossible. In the past 20 years the density functional theory has come to dominate condensed matter physics, extending to chemistry, materials, minerals and beyond.

A popular form of DFT functional was introduced by Nobel laureate Walter Kohn and Lu Sham:

$F(\rho ) = T[\rho ] + \frac{1}{2} \int \frac{\rho ( {\bf r})\rho ({\bf r}')}{4\pi \epsilon_0 |{\bf r − r}' |} d^3 {\bf r}d^3 {\bf r}' + E_{xc}[\rho ] + \sum_i \int \frac{Z_i e\rho ({\bf r}')}{4\pi \epsilon_0|{\bf R_i − r}' |} d^3 {\bf r}' \nonumber$

Nobody has found a satisfactory functional for $$T$$. What is generally used is:

$− \frac{\hbar^2}{2m} \sum_i \int \phi_i \nabla^2_i \phi_i d^3 {\bf r} \nonumber$

which is the kinetic energy of non-interacting “quasiparticles” and depends explicitly on the wavefunctions. The integrals represent electrostatic interactions between the electrons and between electrons and ions, and $$E_{xc}$$ is ‘everything else’. The advantage of this form is that it can be recast to give a set of one-particle equations with non-interacting fermions moving in an effective potential:

$V_{ef f} = \sum_{ion} \frac{Ze}{4\pi \epsilon_0|{\bf R_{ion} − r}'|} + \int \frac{\rho ({\bf r}')}{4\pi \epsilon_0|{\bf r − r}' |} d^3 {\bf r} + \frac{\delta E_{xc}[\rho ]}{\delta \rho ({\bf r})} \nonumber$

Since $$V_{ef f}$$ depends on $$\rho ({\bf r})$$ these equations must be solved self-consistently.

Thus the density functional theorem shows that the problem of solving the Schrödinger equation for a collection of interacting electrons can be transformed to that of a system of non-interacting ‘quasiparticles’, with the cost that the Hamiltonian depends on the electron density $$\rho ({\bf r})$$:

$H[\rho ({\bf r})]\phi_i = E_i\phi_i \quad \text{ where } \quad \rho ({\bf r}) = \sum_i |\phi_i({\bf r})|^2 \nonumber$

Thus the Schrödinger equation is a nonlinear differential equation of many variables. Thus we must turn to the variational method. The most general approach here is to use a Fourier Series (plane wave basis set). The wavefunction for the $$i$$th electron is then written as

$\phi_i = \sum_k c_{ik} \text{ exp}(−i{\bf k.r}) \quad \text{ and the variational equation becomes: } \quad E_0 = \text{Min} \sum_i \langle \phi_i |\hat{H} (\rho )|\phi_i \rangle \nonumber$

The accuracy of the ground state energy of the electrons is determined by the number of Fourier components used. The wavefunctions are expanded in a computer-friendly basis set and the variational principle is used to transform the problem from a set coupled non-linear differential equations into a minimisation of a single function of many variables. Most structural properties of materials depend only on the electron ground state.

The single particle eigenstates of Kohn-Sham functional are not proper single electron states: indistinguishability means there is no such thing. Nevertheless, they are Bloch states, and they do exhibit well defined symmetry and energy “band-structure” which can help with interpretation of the electronic structure

This page titled 8.8: Kohn-Sham functional is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.