8.8: Kohn-Sham functional
- Page ID
- 28933
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)For solids, we have \(10^{26}\) electron states. Analytic solution becomes impossible. In the past 20 years the density functional theory has come to dominate condensed matter physics, extending to chemistry, materials, minerals and beyond.
A popular form of DFT functional was introduced by Nobel laureate Walter Kohn and Lu Sham:
\[F(\rho ) = T[\rho ] + \frac{1}{2} \int \frac{\rho ( {\bf r})\rho ({\bf r}')}{4\pi \epsilon_0 |{\bf r − r}' |} d^3 {\bf r}d^3 {\bf r}' + E_{xc}[\rho ] + \sum_i \int \frac{Z_i e\rho ({\bf r}')}{4\pi \epsilon_0|{\bf R_i − r}' |} d^3 {\bf r}' \nonumber\]
Nobody has found a satisfactory functional for \(T\). What is generally used is:
\[− \frac{\hbar^2}{2m} \sum_i \int \phi_i \nabla^2_i \phi_i d^3 {\bf r} \nonumber\]
which is the kinetic energy of non-interacting “quasiparticles” and depends explicitly on the wavefunctions. The integrals represent electrostatic interactions between the electrons and between electrons and ions, and \(E_{xc}\) is ‘everything else’. The advantage of this form is that it can be recast to give a set of one-particle equations with non-interacting fermions moving in an effective potential:
\[V_{ef f} = \sum_{ion} \frac{Ze}{4\pi \epsilon_0|{\bf R_{ion} − r}'|} + \int \frac{\rho ({\bf r}')}{4\pi \epsilon_0|{\bf r − r}' |} d^3 {\bf r} + \frac{\delta E_{xc}[\rho ]}{\delta \rho ({\bf r})} \nonumber\]
Since \(V_{ef f}\) depends on \(\rho ({\bf r})\) these equations must be solved self-consistently.
Thus the density functional theorem shows that the problem of solving the Schrödinger equation for a collection of interacting electrons can be transformed to that of a system of non-interacting ‘quasiparticles’, with the cost that the Hamiltonian depends on the electron density \(\rho ({\bf r})\):
\[H[\rho ({\bf r})]\phi_i = E_i\phi_i \quad \text{ where } \quad \rho ({\bf r}) = \sum_i |\phi_i({\bf r})|^2 \nonumber\]
Thus the Schrödinger equation is a nonlinear differential equation of many variables. Thus we must turn to the variational method. The most general approach here is to use a Fourier Series (plane wave basis set). The wavefunction for the \(i\)th electron is then written as
\[ \phi_i = \sum_k c_{ik} \text{ exp}(−i{\bf k.r}) \quad \text{ and the variational equation becomes: } \quad E_0 = \text{Min} \sum_i \langle \phi_i |\hat{H} (\rho )|\phi_i \rangle \nonumber\]
The accuracy of the ground state energy of the electrons is determined by the number of Fourier components used. The wavefunctions are expanded in a computer-friendly basis set and the variational principle is used to transform the problem from a set coupled non-linear differential equations into a minimisation of a single function of many variables. Most structural properties of materials depend only on the electron ground state.
The single particle eigenstates of Kohn-Sham functional are not proper single electron states: indistinguishability means there is no such thing. Nevertheless, they are Bloch states, and they do exhibit well defined symmetry and energy “band-structure” which can help with interpretation of the electronic structure