Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

9.3: Two indistinguishable particles with spin 1/2

( \newcommand{\kernel}{\mathrm{null}\,}\)

If we have two identical fermions of spin 1/2, confined in the same region, what is the appropriate wavefunction? In the scattering case we could measure spins far from the interaction, and if we knew that the total spins is conserved, spins can be associated with each particle. In the bound state we cannot tell which particle we are measuring, so the ket must contain both spin and spatial wavefunctions of both particles.

Assuming the spins do not interact, we can separate the two-particle spin wavefunction into σ(1,2)=σ1σ2. We also know the appropriate one particle basis states 1,1,2,2, where 1 represents “particle 1” in spinor state (10). The combinations for indistinguishable particles are then:

12,12,(12+12)/2,(1212)/2

Operating on these with ˆP12 yields eigenvalues 1, 1, 1 and -1 respectively. S2=S(S+1) yields 2, 2, 2 and 0, Sz yields 1,-1,0 and 0. Thus the demands of indistinguishability couples the spins of two identical particles into a triplet (S=1) and a singlet (S=0). The spin-1 vector has three possible Ms component values - hence the triplet.


This page titled 9.3: Two indistinguishable particles with spin 1/2 is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?