# 9.6: Wavefunction for many spin one-half particles

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

The exchange arguments for two-particle systems can be extended to many particle systems: The indistinguishable wavefunction consists of all possible permutations of the product of one electron wavefunctions. For the symmetric case $$\hat{P}_{nm} \Phi = \Phi$$, a product of these permutations will suffice. For the antisymmetric case, the correct form turns out to be given by the determinant of a matrix:

$\Phi = \frac{1}{\sqrt{N!}} \text{det} \begin{pmatrix} \phi_a(1) & \phi_b(1) & ... & \phi_N (1) \\ \phi_a(2) & \phi_b(2) & ... & \phi_N (2) \\ ... & ... & ... & ... \\ \phi_a(N) & \phi_b(N) & ... & \phi_N (N) \end{pmatrix} \nonumber$

This is called a Slater Determinant. For fermions, where $$\hat{P}_{nm} \Phi = −\Phi$$ the Slater Determinant obeys the Pauli exclusion principle: if any two of the one-particle wavefunctions were identical $$(\phi_n = \phi_m)$$, then the wavefunction would be the determinant of a matrix with two identical rows, i.e. zero.

Note also that $$\langle \Phi |\hat{H}|\Phi \rangle$$ has many more exchange terms than direct ones.

This page titled 9.6: Wavefunction for many spin one-half particles is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.