12.7: Example of Born Approximation
( \newcommand{\kernel}{\mathrm{null}\,}\)
Consider scattering of particles interacting via a 3D square well potential: V(r<a)=V0;V(r>a)=0.
The integral required here is then (with χ=2ksinθ2):
∫a0rV0sin(χr)dr=[sin(χr)−χrcos(χr)χ2]a0
whence:
dσdΩ=[2μV0χℏ2]2[sin(χa)−χacos(χa)χ2]2
Using a Maclaurin expansion, the low energy limit is:
dσdΩ=[2μV0χℏ2]219[1−15χ2a2]
From integrating over θ and ϕ the low and high energy limits for the total cross section are
σ(E→∞)=2π[μℏ2]2[V0a3ka]2σ(E→0)=2π[μℏ2]2[V0a3ka]289(k2a2−25k4a4+…)