Skip to main content
Physics LibreTexts

15.1: Casimir effect - forces from nothing

  • Page ID
    28704
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    For many quantum systems, such as the harmonic oscillator, there is still some energy associated with the lowest quantum state. This “zero-point” energy is real, and can be measured in the ‘Casimir effect’. There is a force between two metallic plates in a vacuum, because moving them would change the wavelength/energy of the zero-point quantised electromagnetic waves between them: this change in energy in response to a move equates to a force.

    The wavefunction for transverse standing electromagnetic waves between plates of area A separated by a in the \(z\)-direction is:

    \[\Phi_n = \text{ exp}[i({\bf k.r} − \omega_n t)] \sin (k_nz) \nonumber\]

    where \({\bf k}\) lies in the \(xy\) plane and \(k_n = n\pi /a\). The energy is \(E_n = \hbar \omega_n = hc/\lambda = \hbar c \sqrt{{\bf k}^2 + k^2_n} \)

    and the force per unit area is \(F = − \frac{dE}{da} = \frac{d}{da} \left( \hbar \int \sum^{\infty}_{n=1} \omega_n \right) dk_xdk_y/(2\pi )^2 = − \frac{\hbar c\pi^2}{240 a^4} \)

    Solving this involves a trick of multiplying each term by \(|\omega_n|^{−s}\), then taking the limit of \(s = 0\). This tiny attractive force has now been measured (Bressi, Phys.Rev Letters, 2002)


    This page titled 15.1: Casimir effect - forces from nothing is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.