# 16.5: Exercises - Variational Method

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

An asterisk denotes a harder problem, which you are nevertheless encouraged to try!

1. Estimate the ground-state energy of a 1-dimensional simple harmonic oscillator using as trial function

(a) $$\psi_a(x) = \cos \alpha x$$ for $$|\alpha x| < \pi /2$$, zero elsewhere,

(b) $$\psi_b(x) = \alpha^2 − x^2$$ for $$|x| < \alpha$$, zero elsewhere,

(c) $$\psi_c(x) = C \text{ exp}(−\alpha x^2 )$$

(d) * $$\psi_d(x) = C(\alpha − |x|)$$ (for $$|x| < \alpha$$, zero elsewhere)

(e) $$\psi_e(x) = C \sin \alpha x$$ (for $$|\alpha x| < \pi$$, zero elsewhere)

In each case, $$\alpha$$ is the variational parameter. Don’t forget the normalisation. Sketch the wavefunctions and compare them with the actual ground-state wavefunction.

Numerical answers for checking (a) $$0.568\hbar \omega$$ (b) $$0.598\hbar \omega$$ (c) $$0.5\hbar \omega$$ (d) $$0.5477\hbar \omega$$ (e) $$1.67\hbar \omega$$

Where does the kinetic energy come from in (d)? You will have to consider carefully how to calculate it.

Write down the overlap integral $$\langle \psi_i(x)|\psi_j (x)\rangle$$ between the wavefunction in (e) and each of the other four: Why does (e) represent an estimate of the first excited state?

You may use the results

$\int^{\infty}_{−\infty} \text{ exp}(−\alpha x^2 )dx = \sqrt{\frac{\pi}{\alpha}} \text{ and } \int^{\infty}_{−\infty} x^2 \text{ exp }−\alpha x^2 dx = \frac{\sqrt{\pi}}{2\alpha^{3/2}} \nonumber$

$\int^{\pi /2\alpha}_{-\pi / 2 \alpha} x^2 \cos^2 \alpha x dx = \pi (\pi^2 − 6)/24\alpha^3 \nonumber$

2. * A particle moves in one dimension in the potential

$V (x) = \infty , \quad |x| > a, \quad V (x) = 0, \quad |x| \leq a \nonumber$

Use a trial function of the form

$\psi_T (x) = \begin{cases} (a^2 − x^2 )(1 + cx^2 ), & |x| \leq a \\ 0, & |x| > a \end{cases} \nonumber$

and show that the energy is

$E(c) = \left( \frac{3\hbar^2}{4ma^2} \right) \frac{11a^4 c^2 + 14a^2 c + 35}{a^4c^2 + 6a^2c + 21} \nonumber$

Now, treating $$c$$ as a variational parameter, obtain an upper bound on the ground-state energy. (You may wish to use maple).

$E(c^{(1)}) = 1.23372 \frac{\hbar^2}{ma^2}, \quad E(c^{(2)}) \nonumber$

How does your bound compare with the exact ground-state energy?

3. * Repeat the previous problem taking

$\psi_T (x) = \begin{cases} (a^2 − x^2 )(x + cx^3 ), & |x| \leq a \\ 0, & |x| > a \end{cases} \nonumber$

as the trial function. Why does this give an upper bound for the first excited energy level? Compare your variational result with the exact eigenvalue of the $$n = 2$$ level.

4. A “1d atom” has ground state wavefunction $$u_1(x) = \text{ exp }−\alpha |x|$$.

Consider a ring of N such atoms, one centerd on $$x = 0$$ separated by a distance $$d$$. Using the single site wavefunctions $$u_{1j} (x + jd)$$ as LCAO basis functions, what are the eigenfunctions according to Bloch’s theorum in 1D.

write down the single-particle ground state wavefunction which is an eigenstate of the displacement operator assuming that

$\langle u_1(x)|u_1(x + d)\rangle << 1 \nonumber$

What is the normalisation for this wavefunction?

A computational physicist solves for this wavefunction using the variational method, with a trial wavefunction $$\psi_T (r)$$ and a set of variational parameters $$c_k, k = 2\pi /N d$$

$\psi_T (x) = \sum_k c_k \cos kx \nonumber$

Using your knowledge of the symmetry of the exact atomic solution $$u_1$$, what can you say without calculation about the coefficients $$c_k$$, and allowed values of $$k$$?

What would you get from a trial wavefunction of the form

$\psi_T (r) = \sum_k c_k \sin kx \nonumber$

5. Obtain a variational estimate of the ground-state energy of the hydrogen atom by taking as trial function

$\psi_T (r) = \text{ exp}(−\alpha r^2 ) \nonumber$

How does your result compare with the exact result? Sketch the trial wavefunction and the actual wavefunction on the same graph.

You may use the integrals in Question 1 and

$\int^{\infty}_0 r^4 \text{ exp}(−2ar)dr = \frac{3 \sqrt{2\pi}}{64a^{5/2}} \nonumber$

$\int e^{−\alpha r^2} (4\alpha^2 r^2 − 6\alpha )e^{−\alpha r^2} 4\pi r^2 dr = \frac{−3}{16} \sqrt{\frac{2\pi}{a}} \nonumber$

This page titled 16.5: Exercises - Variational Method is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.