# 16.4: Exercises - Time Dependence

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

An asterisk denotes a harder problem, which you are nevertheless encouraged to try!

1. An easy one to start with! A particle moving in the infinite 1-d square well potential

$V (x) = 0 \quad \text{ for } |x| < a, \quad V (x) = \infty \quad \text{ for } |x| > a \nonumber$

is set up in the initial state $$(t = 0)$$ described by the wavefunction

$\Psi (x, 0) \equiv \psi (x) = [u_1(x) + u_2(x)] / \sqrt{2} \nonumber$

where $$u_1(x)$$, $$u_2(x)$$ are the energy eigenfunctions corresponding to the energy eigenvalues $$E_1$$ and $$E_2$$ respectively. Sketch the probability density at $$t = 0$$.

What is the wavefunction at time $$t$$?

Calculate the probabilities $$P_1$$ and $$P_2$$ that at $$t = 0$$ a measurement of the total energy yields the results $$E_1$$ and $$E_2$$ respectively. Do $$P_1$$ and $$P_2$$ change with time?

Calculate the probabilities $$P_+(t)$$ and $$P_−(t)$$ that at time $$t$$ the particle is in the intervals $$0 < x < a$$ and $$−a < x < 0$$ respectively and try to interpret your results.

2. A system has just two independent states, $$|1\rangle$$ and $$|2\rangle$$, represented by the column matrices

$|1\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{ and } \quad |2\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} \nonumber$

With respect to these two states, the Hamiltonian has a time-independent matrix representation

$\begin{pmatrix} E & V \\ V & E \end{pmatrix} \nonumber$

where $$E$$ and $$V$$ are both real.

Show that the probability of a transition from the state $$|1\rangle$$ to the state $$|2\rangle$$ in the time interval $$t$$ is given without approximation by

$p(t) = \sin^2 \left( \frac{V t}{\hbar} \right) \nonumber$

[Hint: expand the general state $$|\Psi, t\rangle$$ in terms of $$|1 \rangle$$ and $$|2 \rangle$$ and substitute in the TDSE. Note that $$|1 \rangle$$ and $$|2 \rangle$$ are not energy eigenstates!]

Compute the transition probability using first-order time-dependent perturbation theory, taking the unperturbed Hamiltonian matrix to be that for which $$|1 \rangle$$ and $$|2 \rangle$$ are energy eigenstates. By comparing with the exact result, deduce the conditions under which you expect the approximation to be good.

3.*A 1-d harmonic oscillator of charge $$q$$ is acted upon by a uniform electric field which may be considered to be a perturbation and which has time dependence of the form

$\mathcal{E}(t) = \frac{A}{\sqrt{\pi} \tau} \text{ exp } \left\{ −(t/\tau )^2 \right\} \nonumber$

Assuming that when $$t = −\infty$$, the oscillator is in its ground state, evaluate the probability that it is in its first excited state at $$t = +\infty$$ using time-dependent perturbation theory. You may assume that

$\int^{\infty}_{−\infty} \text{ exp}(−y^2 ) dy = \sqrt{\pi} \nonumber$

$\langle n + 1|\hat{x}|n \rangle = \sqrt{\frac{ (n + 1)\hbar }{2m\omega}} \nonumber$

$\langle n + i|\hat{x}|n \rangle = 0 \quad − 1 > i > 1 \nonumber$

Discuss the behavior of the transition probability and the applicability of the perturbation theory result when (a) $$\tau \ll \frac{1}{\omega}$$, and (b) $$\tau \gg \frac{1}{\omega}$$.

4. The Hamiltonian which describes the interaction of a static spin-$$\frac{1}{2}$$ particle with an external magnetic field, $$\underline{B}$$, is

$\hat{H} = −\underline{\hat{\mu}} \cdot \underline{B} \nonumber$

When $$\underline{B}$$ is a static uniform magnetic field in the $$z$$-direction, $$\underline{B}_0 = (0, 0, B_0)$$, the matrix representation of $$\hat{H}_0$$ is simply

$− \frac{1}{2} \gamma B_0\hbar \begin{pmatrix} 1 & 0 \\ 0 & −1 \end{pmatrix} \nonumber$

with eigenvalues $$\mp \frac{1}{2} \gamma B_0\hbar$$ and for this time-independent Hamiltonian, the energy eigenstates are represented by the 2-component column matrices

$| \uparrow \rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } | \downarrow \rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} \nonumber$

Now consider superimposing on the static field $$\underline{B}_0$$ a time-dependent magnetic field of constant magnitude $$B_1$$, rotating in the $$x − y$$ plane with constant angular frequency $$\omega$$:

$\underline{B}_1 (t) = (B_1 \cos \omega t, B_1 \sin \omega t, 0) \nonumber$

If the Hamiltonian is now written as $$\hat{H} (t) = \hat{H} 0 + \hat{V} (t)$$, write down a matrix representation of $$\hat{V} (t)$$.

Any spin state can be written

$|\Psi , t \rangle = c_1(t) \text{ exp}(−iE_{\uparrow}t/\hbar )| \uparrow \rangle + c_2(t) \text{ exp} (−iE_{\downarrow}t/\hbar )| \downarrow \rangle \nonumber$

Obtain, without approximation, the coupled equations for the amplitudes $$c_1(t), c_2(t)$$.

*If initially at $$t = 0$$ the system is in the spin-down state, show that the probability that at time $$t$$, the system is in the spin-up state is given without approximation by

$p_1(t) = |c_1(t)|^2 = A \sin^2 \left\{ \frac{1}{2} \left[ (\gamma B_1)^2 + (\omega + \gamma B_0)^2 \right]^{1/2} t \right\} \nonumber$

where

$A = \frac{(\gamma B_1)^2}{\{[(\gamma B_1)^2 + (\omega + \gamma B_0)^2 ]\}} \nonumber$

What is the corresponding probability, $$p_2(t)$$, that the system is in the spin-down state? Sketch $$p_1(t)$$ and $$p_2(t)$$ as functions of time.

This page titled 16.4: Exercises - Time Dependence is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.