16.4: Exercises - Time Dependence
- Page ID
- 28746
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)An asterisk denotes a harder problem, which you are nevertheless encouraged to try!
1. An easy one to start with! A particle moving in the infinite 1-d square well potential
\[V (x) = 0 \quad \text{ for } |x| < a, \quad V (x) = \infty \quad \text{ for } |x| > a \nonumber\]
is set up in the initial state \((t = 0)\) described by the wavefunction
\[\Psi (x, 0) \equiv \psi (x) = [u_1(x) + u_2(x)] / \sqrt{2} \nonumber\]
where \(u_1(x)\), \(u_2(x)\) are the energy eigenfunctions corresponding to the energy eigenvalues \(E_1\) and \(E_2\) respectively. Sketch the probability density at \(t = 0\).
What is the wavefunction at time \(t\)?
Calculate the probabilities \(P_1\) and \(P_2\) that at \(t = 0\) a measurement of the total energy yields the results \(E_1\) and \(E_2\) respectively. Do \(P_1\) and \(P_2\) change with time?
Calculate the probabilities \(P_+(t)\) and \(P_−(t)\) that at time \(t\) the particle is in the intervals \(0 < x < a\) and \(−a < x < 0\) respectively and try to interpret your results.
2. A system has just two independent states, \(|1\rangle\) and \(|2\rangle\), represented by the column matrices
\[|1\rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{ and } \quad |2\rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} \nonumber\]
With respect to these two states, the Hamiltonian has a time-independent matrix representation
\[\begin{pmatrix} E & V \\ V & E \end{pmatrix} \nonumber\]
where \(E\) and \(V\) are both real.
Show that the probability of a transition from the state \(|1\rangle\) to the state \(|2\rangle\) in the time interval \(t\) is given without approximation by
\[p(t) = \sin^2 \left( \frac{V t}{\hbar} \right) \nonumber\]
[Hint: expand the general state \(|\Psi, t\rangle\) in terms of \(|1 \rangle \) and \(|2 \rangle\) and substitute in the TDSE. Note that \(|1 \rangle\) and \(|2 \rangle\) are not energy eigenstates!]
Compute the transition probability using first-order time-dependent perturbation theory, taking the unperturbed Hamiltonian matrix to be that for which \(|1 \rangle\) and \(|2 \rangle\) are energy eigenstates. By comparing with the exact result, deduce the conditions under which you expect the approximation to be good.
3.*A 1-d harmonic oscillator of charge \(q\) is acted upon by a uniform electric field which may be considered to be a perturbation and which has time dependence of the form
\[\mathcal{E}(t) = \frac{A}{\sqrt{\pi} \tau} \text{ exp } \left\{ −(t/\tau )^2 \right\} \nonumber\]
Assuming that when \(t = −\infty\), the oscillator is in its ground state, evaluate the probability that it is in its first excited state at \(t = +\infty\) using time-dependent perturbation theory. You may assume that
\[\int^{\infty}_{−\infty} \text{ exp}(−y^2 ) dy = \sqrt{\pi} \nonumber\]
\[\langle n + 1|\hat{x}|n \rangle = \sqrt{\frac{ (n + 1)\hbar }{2m\omega}} \nonumber\]
\[\langle n + i|\hat{x}|n \rangle = 0 \quad − 1 > i > 1 \nonumber\]
Discuss the behavior of the transition probability and the applicability of the perturbation theory result when (a) \(\tau \ll \frac{1}{\omega}\), and (b) \(\tau \gg \frac{1}{\omega}\).
4. The Hamiltonian which describes the interaction of a static spin-\(\frac{1}{2}\) particle with an external magnetic field, \( \underline{B}\), is
\[\hat{H} = −\underline{\hat{\mu}} \cdot \underline{B} \nonumber\]
When \(\underline{B}\) is a static uniform magnetic field in the \(z\)-direction, \(\underline{B}_0 = (0, 0, B_0)\), the matrix representation of \(\hat{H}_0\) is simply
\[− \frac{1}{2} \gamma B_0\hbar \begin{pmatrix} 1 & 0 \\ 0 & −1 \end{pmatrix} \nonumber\]
with eigenvalues \(\mp \frac{1}{2} \gamma B_0\hbar\) and for this time-independent Hamiltonian, the energy eigenstates are represented by the 2-component column matrices
\[| \uparrow \rangle \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } | \downarrow \rangle \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} \nonumber\]
Now consider superimposing on the static field \(\underline{B}_0\) a time-dependent magnetic field of constant magnitude \(B_1\), rotating in the \(x − y\) plane with constant angular frequency \(\omega\):
\[\underline{B}_1 (t) = (B_1 \cos \omega t, B_1 \sin \omega t, 0) \nonumber\]
If the Hamiltonian is now written as \(\hat{H} (t) = \hat{H} 0 + \hat{V} (t)\), write down a matrix representation of \(\hat{V} (t)\).
Any spin state can be written
\[|\Psi , t \rangle = c_1(t) \text{ exp}(−iE_{\uparrow}t/\hbar )| \uparrow \rangle + c_2(t) \text{ exp} (−iE_{\downarrow}t/\hbar )| \downarrow \rangle \nonumber\]
Obtain, without approximation, the coupled equations for the amplitudes \(c_1(t), c_2(t)\).
*If initially at \(t = 0\) the system is in the spin-down state, show that the probability that at time \(t\), the system is in the spin-up state is given without approximation by
\[p_1(t) = |c_1(t)|^2 = A \sin^2 \left\{ \frac{1}{2} \left[ (\gamma B_1)^2 + (\omega + \gamma B_0)^2 \right]^{1/2} t \right\} \nonumber\]
where
\[A = \frac{(\gamma B_1)^2}{\{[(\gamma B_1)^2 + (\omega + \gamma B_0)^2 ]\}} \nonumber\]
What is the corresponding probability, \(p_2(t)\), that the system is in the spin-down state? Sketch \(p_1(t)\) and \(p_2(t)\) as functions of time.