Skip to main content
Physics LibreTexts

7.5: Low-temperature Heat Capacity

  • Page ID
    6375
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    If

    \[ G(\omega) d \omega=\text { number of normal modes with frequencies from } \omega \text { to } \omega+d \omega\]

    then

    \[ E^{\mathrm{crystal}}=\int_{0}^{\infty} G(\omega) e^{\mathrm{SHO}}(\omega) d \omega \quad \text { and } \quad C_{V}^{\mathrm{crystal}}=\int_{0}^{\infty} G(\omega) c_{V}^{\mathrm{SHO}}(\omega) d \omega\]

    and so forth.

    Density of modes:

    \[ \begin{aligned} G(\omega) d \omega &=\sum_{\text { branches }}[\text { vol. of shell in } k \text { -space }] \text { (density of modes in } k \text { -space) } \\ &=\sum_{\text { branches }}\left[4 \pi\left(k_{b}(\omega)\right)^{2} d k_{b}\right]\left(\frac{V}{8 \pi^{3}}\right) \end{aligned}\]

    This formula holds for any isotropic dispersion relation kb(ω). For small values of ω the dispersion relation for each branch is linear (with sound speed cb) so

    \[ k_{b}=\frac{\omega}{c_{b}} \quad \text { and } \quad d k_{b}=\frac{d \omega}{c_{b}},\]

    whence

    \( G(\omega) d \omega=\sum_{\text { branches }}\left[4 \pi\left(\frac{\omega}{c_{b}}\right)^{2} \frac{d \omega}{c_{b}}\right]\left(\frac{V}{8 \pi^{3}}\right)\)

    \[ =\frac{V}{2 \pi^{2}}\left(\sum_{b=1}^{3} \frac{1}{c_{b}^{3}}\right) \omega^{2} d \omega.\]

    If we define the “average sound speed” cs through the so-called “harmonic cubed average”,

    \[ \frac{1}{c_{s}^{3}} \equiv \frac{1}{3} \sum_{b=1}^{3} \frac{1}{c_{b}^{3}},\]

    then we have the small-ω density of modes

    \[ G(\omega) d \omega=\frac{3 V}{2 \pi^{2}} \frac{\omega^{2}}{c_{s}^{3}} d \omega.\]

    At any temperature,

    \[ C_{V}^{\text { crystal }}=\int_{0}^{\infty} G(\omega) c_{V}^{\mathrm{SHO}}(\omega) d \omega.\]

    Recall from equation (5.78) that

    \[ c_{V}^{\mathrm{SHO}}(\omega)=k_{B}\left(\frac{\hbar \omega}{k_{B} T}\right)^{2} \frac{e^{-\hbar \omega / k_{B} T}}{\left(1-e^{-h \omega / k_{B} T}\right)^{2}},\]

    and using the small-ω result (7.11), we have the low-temperature result

    \[ C_{V}^{\mathrm{crystal}}=\frac{3 V}{2 \pi^{2}} \frac{1}{c_{s}^{3}} k_{B} \int_{0}^{\infty} \omega^{2} d \omega\left(\frac{\hbar \omega}{k_{B} T}\right)^{2} \frac{e^{-\hbar \omega / k_{B} T}}{\left(1-e^{-\hbar \omega / k_{B} T}\right)^{2}}.\]

    For our first step, avoid despair — instead convert to the dimensionless variable

    \[ x=\frac{\hbar \omega}{k_{B} T}\]

    and find

    \[ C_{V}^{\text { crystal }}=\frac{3 V}{2 \pi^{2}} \frac{1}{c_{s}^{3}} k_{B}\left(\frac{k_{B} T}{\hbar}\right)^{3} \int_{0}^{\infty} \frac{x^{4} e^{-x}}{\left(1-e^{-x}\right)^{2}} d x\]

    The integral is rather hard to do, but we don’t need to do it — the integral is just a number. We have achieved our aim, namely to show that at low temperatures, CVT3.

    However, if you want to chase down the right numbers, after some fiddling you’ll find that

    \[ \int_{0}^{\infty} \frac{x^{4} e^{-x}}{\left(1-e^{-x}\right)^{2}} d x=4 \Gamma(4) \zeta(4)=\frac{4}{15} \pi^{4}.\]

    Thus, the low-temperature specific-heat of a solid due to a lattice vibration is

    \[ C_{V}^{\mathrm{crystal}}=k_{B} V \frac{2 \pi^{2}}{5}\left(\frac{k_{B} T}{\hbar c_{s}}\right)^{3}.\]

    7.3 How far do the atoms vibrate?

    Consider a simplified classical Einstein model in which N atoms, each of mass m, move classically on a simple cubic lattice with nearest neighbor separation of a. Each atom is bound to its lattice site by a spring of spring constant K, and all the values of K are the same. At temperature T, what is the root mean square average distance of each atom from its equilibrium site? (Note: I am asking for an ensemble average, not a time average.)


    This page titled 7.5: Low-temperature Heat Capacity is shared under a CC BY-SA license and was authored, remixed, and/or curated by Daniel F. Styer.

    • Was this article helpful?