Skip to main content
Physics LibreTexts

7.5: Low-temperature Heat Capacity

  • Page ID
    6375
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    If

    \[ G(\omega) d \omega=\text { number of normal modes with frequencies from } \omega \text { to } \omega+d \omega\]

    then

    \[ E^{\mathrm{crystal}}=\int_{0}^{\infty} G(\omega) e^{\mathrm{SHO}}(\omega) d \omega \quad \text { and } \quad C_{V}^{\mathrm{crystal}}=\int_{0}^{\infty} G(\omega) c_{V}^{\mathrm{SHO}}(\omega) d \omega\]

    and so forth.

    Density of modes:

    \[ \begin{aligned} G(\omega) d \omega &=\sum_{\text { branches }}[\text { vol. of shell in } k \text { -space }] \text { (density of modes in } k \text { -space) } \\ &=\sum_{\text { branches }}\left[4 \pi\left(k_{b}(\omega)\right)^{2} d k_{b}\right]\left(\frac{V}{8 \pi^{3}}\right) \end{aligned}\]

    This formula holds for any isotropic dispersion relation kb(ω). For small values of ω the dispersion relation for each branch is linear (with sound speed cb) so

    \[ k_{b}=\frac{\omega}{c_{b}} \quad \text { and } \quad d k_{b}=\frac{d \omega}{c_{b}},\]

    whence

    \( G(\omega) d \omega=\sum_{\text { branches }}\left[4 \pi\left(\frac{\omega}{c_{b}}\right)^{2} \frac{d \omega}{c_{b}}\right]\left(\frac{V}{8 \pi^{3}}\right)\)

    \[ =\frac{V}{2 \pi^{2}}\left(\sum_{b=1}^{3} \frac{1}{c_{b}^{3}}\right) \omega^{2} d \omega.\]

    If we define the “average sound speed” cs through the so-called “harmonic cubed average”,

    \[ \frac{1}{c_{s}^{3}} \equiv \frac{1}{3} \sum_{b=1}^{3} \frac{1}{c_{b}^{3}},\]

    then we have the small-ω density of modes

    \[ G(\omega) d \omega=\frac{3 V}{2 \pi^{2}} \frac{\omega^{2}}{c_{s}^{3}} d \omega.\]

    At any temperature,

    \[ C_{V}^{\text { crystal }}=\int_{0}^{\infty} G(\omega) c_{V}^{\mathrm{SHO}}(\omega) d \omega.\]

    Recall from equation (5.78) that

    \[ c_{V}^{\mathrm{SHO}}(\omega)=k_{B}\left(\frac{\hbar \omega}{k_{B} T}\right)^{2} \frac{e^{-\hbar \omega / k_{B} T}}{\left(1-e^{-h \omega / k_{B} T}\right)^{2}},\]

    and using the small-ω result (7.11), we have the low-temperature result

    \[ C_{V}^{\mathrm{crystal}}=\frac{3 V}{2 \pi^{2}} \frac{1}{c_{s}^{3}} k_{B} \int_{0}^{\infty} \omega^{2} d \omega\left(\frac{\hbar \omega}{k_{B} T}\right)^{2} \frac{e^{-\hbar \omega / k_{B} T}}{\left(1-e^{-\hbar \omega / k_{B} T}\right)^{2}}.\]

    For our first step, avoid despair — instead convert to the dimensionless variable

    \[ x=\frac{\hbar \omega}{k_{B} T}\]

    and find

    \[ C_{V}^{\text { crystal }}=\frac{3 V}{2 \pi^{2}} \frac{1}{c_{s}^{3}} k_{B}\left(\frac{k_{B} T}{\hbar}\right)^{3} \int_{0}^{\infty} \frac{x^{4} e^{-x}}{\left(1-e^{-x}\right)^{2}} d x\]

    The integral is rather hard to do, but we don’t need to do it — the integral is just a number. We have achieved our aim, namely to show that at low temperatures, CVT3.

    However, if you want to chase down the right numbers, after some fiddling you’ll find that

    \[ \int_{0}^{\infty} \frac{x^{4} e^{-x}}{\left(1-e^{-x}\right)^{2}} d x=4 \Gamma(4) \zeta(4)=\frac{4}{15} \pi^{4}.\]

    Thus, the low-temperature specific-heat of a solid due to a lattice vibration is

    \[ C_{V}^{\mathrm{crystal}}=k_{B} V \frac{2 \pi^{2}}{5}\left(\frac{k_{B} T}{\hbar c_{s}}\right)^{3}.\]

    7.3 How far do the atoms vibrate?

    Consider a simplified classical Einstein model in which N atoms, each of mass m, move classically on a simple cubic lattice with nearest neighbor separation of a. Each atom is bound to its lattice site by a spring of spring constant K, and all the values of K are the same. At temperature T, what is the root mean square average distance of each atom from its equilibrium site? (Note: I am asking for an ensemble average, not a time average.)


    This page titled 7.5: Low-temperature Heat Capacity is shared under a CC BY-SA license and was authored, remixed, and/or curated by Daniel F. Styer.

    • Was this article helpful?