# 7.5: Low-temperature Heat Capacity

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

If

$G(\omega) d \omega=\text { number of normal modes with frequencies from } \omega \text { to } \omega+d \omega$

then

$E^{\mathrm{crystal}}=\int_{0}^{\infty} G(\omega) e^{\mathrm{SHO}}(\omega) d \omega \quad \text { and } \quad C_{V}^{\mathrm{crystal}}=\int_{0}^{\infty} G(\omega) c_{V}^{\mathrm{SHO}}(\omega) d \omega$

and so forth.

Density of modes:

\begin{aligned} G(\omega) d \omega &=\sum_{\text { branches }}[\text { vol. of shell in } k \text { -space }] \text { (density of modes in } k \text { -space) } \\ &=\sum_{\text { branches }}\left[4 \pi\left(k_{b}(\omega)\right)^{2} d k_{b}\right]\left(\frac{V}{8 \pi^{3}}\right) \end{aligned}

This formula holds for any isotropic dispersion relation kb(ω). For small values of ω the dispersion relation for each branch is linear (with sound speed cb) so

$k_{b}=\frac{\omega}{c_{b}} \quad \text { and } \quad d k_{b}=\frac{d \omega}{c_{b}},$

whence

$$G(\omega) d \omega=\sum_{\text { branches }}\left[4 \pi\left(\frac{\omega}{c_{b}}\right)^{2} \frac{d \omega}{c_{b}}\right]\left(\frac{V}{8 \pi^{3}}\right)$$

$=\frac{V}{2 \pi^{2}}\left(\sum_{b=1}^{3} \frac{1}{c_{b}^{3}}\right) \omega^{2} d \omega.$

If we define the “average sound speed” cs through the so-called “harmonic cubed average”,

$\frac{1}{c_{s}^{3}} \equiv \frac{1}{3} \sum_{b=1}^{3} \frac{1}{c_{b}^{3}},$

then we have the small-ω density of modes

$G(\omega) d \omega=\frac{3 V}{2 \pi^{2}} \frac{\omega^{2}}{c_{s}^{3}} d \omega.$

At any temperature,

$C_{V}^{\text { crystal }}=\int_{0}^{\infty} G(\omega) c_{V}^{\mathrm{SHO}}(\omega) d \omega.$

Recall from equation (5.78) that

$c_{V}^{\mathrm{SHO}}(\omega)=k_{B}\left(\frac{\hbar \omega}{k_{B} T}\right)^{2} \frac{e^{-\hbar \omega / k_{B} T}}{\left(1-e^{-h \omega / k_{B} T}\right)^{2}},$

and using the small-ω result (7.11), we have the low-temperature result

$C_{V}^{\mathrm{crystal}}=\frac{3 V}{2 \pi^{2}} \frac{1}{c_{s}^{3}} k_{B} \int_{0}^{\infty} \omega^{2} d \omega\left(\frac{\hbar \omega}{k_{B} T}\right)^{2} \frac{e^{-\hbar \omega / k_{B} T}}{\left(1-e^{-\hbar \omega / k_{B} T}\right)^{2}}.$

For our first step, avoid despair — instead convert to the dimensionless variable

$x=\frac{\hbar \omega}{k_{B} T}$

and find

$C_{V}^{\text { crystal }}=\frac{3 V}{2 \pi^{2}} \frac{1}{c_{s}^{3}} k_{B}\left(\frac{k_{B} T}{\hbar}\right)^{3} \int_{0}^{\infty} \frac{x^{4} e^{-x}}{\left(1-e^{-x}\right)^{2}} d x$

The integral is rather hard to do, but we don’t need to do it — the integral is just a number. We have achieved our aim, namely to show that at low temperatures, CVT3.

However, if you want to chase down the right numbers, after some fiddling you’ll find that

$\int_{0}^{\infty} \frac{x^{4} e^{-x}}{\left(1-e^{-x}\right)^{2}} d x=4 \Gamma(4) \zeta(4)=\frac{4}{15} \pi^{4}.$

Thus, the low-temperature specific-heat of a solid due to a lattice vibration is

$C_{V}^{\mathrm{crystal}}=k_{B} V \frac{2 \pi^{2}}{5}\left(\frac{k_{B} T}{\hbar c_{s}}\right)^{3}.$

7.3 How far do the atoms vibrate?

Consider a simplified classical Einstein model in which N atoms, each of mass m, move classically on a simple cubic lattice with nearest neighbor separation of a. Each atom is bound to its lattice site by a spring of spring constant K, and all the values of K are the same. At temperature T, what is the root mean square average distance of each atom from its equilibrium site? (Note: I am asking for an ensemble average, not a time average.)

This page titled 7.5: Low-temperature Heat Capacity is shared under a CC BY-SA license and was authored, remixed, and/or curated by Daniel F. Styer.