Skip to main content

# 7.6: More Realistic Models

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

7.4 Debye frequency

In the Debye model, a solid with average sound speed cs has density of normal-mode frequencies

$G(\omega)=\left\{\begin{array}{cl}{\frac{3 V}{2 \pi^{2} c_{s}^{3}} \omega^{2}} & {\text { for } \omega<\omega_{D}} \\ {0} & {\text { for } \omega>\omega_{D}}\end{array}\right..$

Find a formula for ωD(N, V, cs), and write G(ω) in terms of ωD.

7.5 Debye model energy and heat capacity

Find E(T, V, N) and CV(T, V, N) for a harmonic solid in the Debye model, in terms of ωD and the function

This page titled 7.6: More Realistic Models is shared under a CC BY-SA license and was authored, remixed, and/or curated by Daniel F. Styer.

• Was this article helpful?