Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

3.S: Summary

( \newcommand{\kernel}{\mathrm{null}\,}\)




























































































































































































































































































































\( \newcommand\Dalpha

ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[1], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dbeta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[2], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dgamma
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[3], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Ddelta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[4], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Depsilon
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[5], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dvarepsilon
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[6], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dzeta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[7], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Deta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[8], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dtheta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[9], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dvartheta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[10], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Diota
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[11], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dkappa
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[12], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Dlambda
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[13], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)





\( \newcommand\Dvarpi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[14], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)











\( \newcommand\DGamma
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[15], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\DDelta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[16], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\DTheta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[17], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)









































































\( \newcommand\Vmu
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[18], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vnu
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[19], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vxi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[20], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vom
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[21], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vpi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[22], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vvarpi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[23], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vrho
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[24], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vvarrho
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[25], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vsigma
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[26], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vvarsigma
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[27], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vtau
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[28], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vupsilon
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[29], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vphi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[30], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vvarphi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[31], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vchi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[32], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vpsi
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[33], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\Vomega
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[34], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\VGamma
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[35], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)
\( \newcommand\VDelta
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/p[1]/span[36], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)

















\newcommand\BI{\mib I}}










































\)










































































\newcommand { M}

























\newcommand { m}














































}


















\( \newcommand\tcb{\textcolor{blue}\)
\( \newcommand\tcr{\textcolor{red}\)



































1$#1_$






















































































\newcommand\SZ{\textsf Z}} \( \newcommand\kFd{k\ns_{\RF\dar}\)

\newcommand\mutB{\tilde\mu}\ns_\ssr{B}



\( \newcommand\xhihOZ
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/span[1], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)



\( \newcommand\labar
ParseError: invalid DekiScript (click for details)
Callstack:
    at (Template:MathJaxArovas), /content/body/div/span[2], line 1, column 1
    at template()
    at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/03:_Ergodicity_and_the_Approach_to_Equilibrium/3.S:_Summary), /content/body/p/span, line 1, column 23
\)





















References

  • R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1975) An advanced text with an emphasis on fluids and kinetics.
  • R. Balian, From Macrophysics to Microphysics (2 vols., Springer-Verlag, 2006) A very detailed discussion of the fundamental postulates of statistical mechanics and their implications.)

Summary

Distributions: Equilibrium statistical mechanics describes systems of particles in terms of time-independent statistical distributions. Where do these distributions come from? How does a system with a given set of initial conditions come to have time-independent properties which can be described in this way?

Master equation: Let Pi(t) be the probability that a system is in state |i at time t. The evolution of the Pi(t) is given by dPidt=j(WijPjWjiPi)=jΓijPj, where the rates Wij0 are nonnegative. Conservation of probability means iΓij=0 for all j, hence ψt=(1,1,,1) is a left eigenvector with eigenvalue zero. The corresponding right eigenvector is the equilibrium distribution: ΓijPeqj=0. Detailed balance, WijPeqj=WjiPeqi, is a more stringent condition than the requirement of a stationary distribution alone. Boltzmann’s H-theorem: ˙H0, where H=iPiln(Pi/Peqi). Thus, the ME dynamics are irreversible. But the underlying microscopic laws are reversible!

Hamiltonian evolution: ˙φi=JijHφj, where φ=(q1,,qr,p1,,pr) is a point in 2r-dimensional phase space, and J=(0II0). Phase space flow is then incompressible: ˙φ=0, hence phase space densities ϱ(φ,t) obey Liouville’s equation, tϱ+˙φϱ=0 (follows from continuity and incompressibility). Any function ϱ(Λ1,,Λk), where each Λi is conserved by the phase space dynamics, will be a stationary solution to Liouville’s equation. In particular, the microcanonical distribution, ϱE(φ)=δ(EH(φ))/D(E) is such a solution, where D(E)=Trδ(EH(φ)) is the density of states.

Poincaré Recurrence: Let gτφ(t)=φ(t+τ) be the τ-advance mapping for a dynamical system ˙φ=V(φ). If (i) gτ is invertible, (ii) gτ preserves phase space volumes, and (iii) the volume of phase accessible given the dynamics and initial conditions is finite, then in any finite neighborhood R0 of phase space there exists a point φ0R0 such that gnτφ0R0 with n finite. This means all the perfume molecules eventually go back inside the bottle (if it is opened in a sealed room).

Kac ring model: Normally the recurrence time is orders of magnitude greater than the age of the Universe, but for the Kac ring model, one can simulate the recurrence phenomenon easily. The model consists of a ring of N sites, and a quenched ( fixed) random distribution of flippers on F of the links (FN). On each site lies a discrete spin variable which is polarized either up or down. The system evolves discretely by all spins advancing clockwise by one site during a given time step. All spins which pass through a flipper reverse their polarization. Viewed probabilistically, if pn is the probability any given spin is up at time n, then under the assumptions of the Stosszahlansatz pn+1=(1x)pn+x(1pn), where x=F/N is the flipper density. This leads to exponential relaxation with a time scale τ=1/ln|12x|, but the recurrence time is clearly N (if F is even) or 2N (if F is odd).

Ergodicity and mixing: A dynamical system is ergodic if

f(φ)T=limT1TT0dtf(φ(t))=Trf(φ)δ(EH(φ))Trδ(EH(φ))=f(φ)S .

This means long time averages are equal to phase space averages. This does not necessarily mean that the phase space distribution will converge to the microcanonical distribution. A stronger condition, known as mixing, means that the distribution spreads out ’evenly’ over the phase space hypersurface consistent with all conservation laws. Thus, if g is a phase space map, and if ν(A)DA(E)/D(E) is the fraction of the energy hypersurface (assume no conserved quantities other than H=E) contained in A, then g is mixing if limnν(gnAB)=ν(A)ν(B). An example of a mixing map on a two-dimensional torus is the Arnold ’cat map’,

(qp)=(1112)(qp) mod Z2 .

Thermalization of quantum systems: This is a current research topic. One proposal, due to Deutsch (1991) and Srednicki (1994) is the eigenstate thermalization hypothesis (ETH). This says that thermal information is encoded in each eigenstate, such that if Eα[E,E+ΔE], then

Ψα|A|Ψα=AEα ,

the expectation value of some local, translationally-invariant, few-body operator A in the state |Ψα, is given by its average over a small energy window containing Eα. If this is the case, then so long as we prepare an initial state such that the spread of energies is within ΔE of some value E, where ΔEEE0 with E0 the ground state energy, then AT=AE, and time averages become energy averages. Equivalently, the reduced density matrix ρS corresponding to a system S which is a subset of a universe U, with WS=U (W is the ’world’), is a thermal density matrix: ρS=Z1SeβˆHS, where ˆHS is the Hamiltonian restricted to S, and with temperature fixed by the requirement Tr(ρSˆHS)=E(VS/VU), where the last factor is a ratio of volumes. ETH does not hold for so-called integrable models with an extensive number of independent conserved quantities. But it has been shown, both perturbatively as well as numerically, to hold for certain model nonintegrable systems. An interesting distinction between classical and quantum thermalization: in the quantum case, time evolution does not create the thermal state. Rather, it reveals the thermal distribution which is encoded in each eigenstate after sufficient time that dephasing has occurred and all correlations between the different wavefunction expansion coefficients is lost.

Endnotes

  1. Exceptions involve quantities which are conserved by collisions, such as overall particle number, momentum, and energy. These quantities relax to equilibrium in a special way called hydrodynamics.
  2. ‘Compact’ in the parlance of mathematical analysis means ‘closed and bounded’.
  3. The equality lndetM=TrlnM is most easily proven by bringing the matrix to diagonal form via a similarity transformation, and proving the equality for diagonal matrices.
  4. Actually, the microscopic laws of physics are not time-reversal invariant, but rather are invariant under the product PCT, where P is parity, C is charge conjugation, and T is time reversal.
  5. The natural numbers N is the set of non-negative integers {0,1,2,}.
  6. In the nonrelativistic limit, T=p2/2m. For relativistic particles, we have T=(p2c2+m2c4)1/2mc2.
  7. Actually, what the recurrence theorem guarantees is that there is a configuration arbitrarily close to the initial one which recurs, to within the same degree of closeness.
  8. Unfortunately, many important physicists were German and we have to put up with a legacy of long German words like Gedankenexperiment, Zitterbewegung, Brehmsstrahlung, Stosszahlansatz, Kartoffelsalat,
  9. The cat map gets its name from its initial application, by Arnold, to the image of a cat’s face.
  10. There is something beyond mixing, called a K-system. A K-system has positive Kolmogorov-Sinai entropy. For such a system, closed orbits separate exponentially in time, and consequently the Liouvillian L has a Lebesgue spectrum with denumerably infinite multiplicity.
  11. More generally, we could project onto a K-dimensional subspace, in which case there would be K eigenvalues of +1 and NK eigenvalues of 0, where N is the dimension of the entire vector space.
  12. Recall that in systems with no disorder, eigenstates exhibit Bloch periodicity in space.
  13. Since the probability Pi(t) is real, if the eigenvalue with the smallest ( largest negative) real part is complex, there will be a corresponding complex conjugate eigenvalue, and summing over all eigenvectors will result in a real value for Pi(t).

This page titled 3.S: Summary is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Daniel Arovas.

Support Center

How can we help?