Skip to main content
Physics LibreTexts

6.1: Maxwell Relations

  • Page ID
    32030
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For a system with one constituent with fixed number of particles, from the first and second laws, and from Equation 5.1.10, we have the basic relations

    \[dU\;=\;TdS\;-\;pdV \\ dH\;=\;TdS\;-\;Vdp \\ dF\;=\;-SdT\;-\;pdV \\ dG\;=\;-SdT\;-\;Vdp \label{6.1.1}\]

    The quantities on the left are all perfect differentials. For a general differential \(dR\) of the form

    \[dR = Xdx + Y dy\]

    to be a perfect differential, the necessary and sufficient condition is

    \[\biggl( \frac{\partial X}{\partial y} \biggr)_x \;=\; \biggl( \frac{\partial Y}{\partial x} \biggr)_y \label{6.1.3}\]

    Applying this to the four differentials in \ref{6.1.1}, we get

    \[ \biggl( \frac{\partial T}{\partial V} \biggr)_S \;=\; -\biggl( \frac{\partial p}{\partial S} \biggr)_V \\ \biggl( \frac{\partial T}{\partial p} \biggr)_S \;=\; \biggl( \frac{\partial V}{\partial S} \biggr)_p \\ \biggl( \frac{\partial S}{\partial V} \biggr)_T \;=\; \biggl( \frac{\partial p}{\partial T} \biggr)_V \\ \biggl( \frac{\partial S}{\partial p} \biggr)_T \;=\; -\biggl( \frac{\partial V}{\partial T} \biggr)_p \]

    These four relations are called the Maxwell relations.

    A Mathematical Result

    Let \(X\), \(Y\), \(Z\) be three variables, of which only two are independent. Taking \(Z\) to be a function of \(X\) and \(Y\), we can write

    \[dZ\;=\; \biggl( \frac{\partial Z}{\partial X} \biggr)_Y dX \;+\; \biggl( \frac{\partial Z}{\partial Y} \biggr)_X dY \label{6.1.5}\]

    If now we take \(X\) and \(Z\) as the independent variables, we can write

    \[dY\;=\; \biggl( \frac{\partial Y}{\partial X} \biggr)_Y dX \;+\; \biggl( \frac{\partial Y}{\partial Z} \biggr)_X dZ \]

    Upon substituting this result into \ref{6.1.5}, we get

    \[dZ\;=\; \biggl[ \biggl( \frac{\partial Z}{\partial X} \biggr)_Y \;+\; \biggl( \frac{\partial Z}{\partial Y} \biggr)_X \biggl( \frac{\partial Y}{\partial X} \biggr)_Z \biggr]dX \;+\; \biggl( \frac{\partial Z}{\partial Y} \biggr)_X \biggl( \frac{\partial Y}{\partial Z} \biggr)_X dZ\]

    Since we are considering \(X\) and \(Z\) as independent variables now, this equation immediately yields the relations

    \[\biggl( \frac{\partial Z}{\partial Y} \biggr)_X \biggl( \frac{\partial Y}{\partial Z} \biggr)_X dZ \;\;=\;\;1 \\ \biggl( \frac{\partial Z}{\partial X} \biggr)_Y \;+\; \biggl( \frac{\partial Z}{\partial Y} \biggr)_X \biggl( \frac{\partial Y}{\partial X} \biggr)_Z \;\;=\;\;0 \]

    These relations can be rewritten as

    \[\biggl( \frac{\partial Z}{\partial Y} \biggr)_X \;\;=\;\; \frac{1}{\bigl( \frac{dY}{dZ} \bigr)_X} \\ \biggl( \frac{\partial X}{\partial Z} \biggr)_Y \biggl( \frac{\partial Z}{\partial Y} \biggr)_X \biggl( \frac{\partial Y}{\partial X} \biggr)_Z \;\;=\;\;-1 \label{6.1.9}\]


    This page titled 6.1: Maxwell Relations is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by V. Parameswaran Nair.

    • Was this article helpful?