Skip to main content
Physics LibreTexts

6.2: Other Relations

  • Page ID
    32031
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The TdS Equations

    The entropy \(S\) is a function of the state of the system. We can take it to be a function of any two of the three variables (\(p\), \(T\), \(V\)). Taking \(S\) to be a function of \(p\) and \(T\), we write

    \[T dS = T \biggl( \frac{\partial S}{\partial T} \biggr)_p dT \;+\; T \biggl( \frac{\partial S}{\partial p} \biggr)_T dp \]

    For the first term on the right hand side, we can use

    \[T \biggl( \frac{\partial S}{\partial T} \biggr)_p dT \;=\; \biggl( \frac{\partial Q}{\partial T} \biggr)_p dT \;=\; C_p \label{6.2.2} \]

    where \(C_p\) is the specific heat at constant pressure. Further, using the last of the Maxwell relations, we can now write Equation \ref{6.2.2} as

    \[Tds \;=\; C_pdT \;-\;T\biggl( \frac{\partial V}{\partial T} \biggr)_p dp \label{6.2.3}\]

    The coefficient of volumetric expansion (due to heating) is defined by

    \[ \alpha \;=\; \frac{1}{V} \biggl( \frac{\partial V}{\partial T} \biggr)_p \]

    Equation \ref{6.2.3} can thus be rewritten as

    \[T dS \;=\; C_p dT \;−\; \alpha T V dp \label{6.2.5}\]

    If we take \(S\) to be a function of \(V\) and \(T\),

    \[T dS \;=\; T \biggl( \frac{\partial S}{\partial T} \biggr)_V dT \;+\; T \biggl( \frac{\partial S}{\partial V} \biggr)_T dV \]

    Again the first term on the right hand side can be expressed in terms of Cv, the specific heat at constant volume, using

    \[ T \biggl( \frac{\partial S}{\partial T} \biggr)_V \;=\; C_v \]

    Further using the Maxwell relations, we get

    \[T dS \;=\; C_vdT \;+\; T \biggl( \frac{\partial p}{\partial T} \biggr)_V dV \label{6.2.8} \]

    Equations \ref{6.2.3} (or \ref{6.2.5} and \ref{6.2.8}) are known as the \(T dS\) equations.

    Equations for Specific Heats

    Equating the two expressions for \(T dS\), we get

    \[(C_p \;−\; C_v) dT \;=\; T \biggl[ \biggl( \frac{\partial p}{\partial T} \biggr)_V dV \;+\; \biggl( \frac{\partial V}{\partial T} \biggr)_pdp \biggr] \label{6.2.9}\]

    By the equation of state, we can write \(p\) as a function of \(V\) and \(T\), so that

    \[dp \;=\; \biggl( \frac{\partial p}{\partial T} \biggr)_V dT \;+\; \biggl( \frac{\partial p}{\partial V} \biggr)_T dV\]

    Using this in Equation \ref{6.2.9}, we find

    \[(C_p \;−\; C_v) dT \;=\; T \biggl[ \biggl( \frac{\partial p}{\partial T} \biggr)_V \;+\; \biggl( \frac{\partial V}{\partial T} \biggr)_p \biggl( \frac{\partial p}{\partial V} \biggr)_T \biggr]dV \;+\; T \biggl( \frac{\partial V}{\partial T} \biggr)_p \biggl( \frac{\partial p}{\partial T} \biggr)_V dT \label{6.2.11}\]

    However, using Equation 6.1.9, taking \(X \;=\; V\), \(Y \;=\; p\) and \(Z \;=\; T\), we have

    \[ \biggl( \frac{\partial p}{\partial T} \biggr)_V \;+\; \biggl( \frac{\partial V}{\partial T} \biggr)_p \biggl( \frac{\partial p}{\partial V} \biggr)_T \;=\; 0 \label{6.2.12}\]

    Thus the coefficient of \(dV\) in Equation \ref{6.2.11} vanishes and we can simplify it as

    \[C_p \;-\; C_v \;=\; T \biggl( \frac{\partial V}{\partial T} \biggr)_p \biggl( \frac{\partial p}{\partial T} \biggr)_V \;=\; -T \biggl[ \biggl( \frac{\partial V}{\partial T} \biggr)_p \biggr]^2 \biggl( \frac{\partial p}{\partial V} \biggr)_T \]

    where we have used Equation \ref{6.2.12} again. We have already defined the coefficient of volumetric expansion \( \alpha \). The isothermal compressibility \( \kappa_T\) is defined by

    \[ \frac{1}{ \kappa_T} \;=\; -V \biggl( \frac{\partial p}{\partial V} \biggr)_T \]

    In terms of these we can express \(C_p \;−\; C_v\) as

    \[ C_p \;-\; C_v \;=\; V \frac{ \alpha^2T}{ \kappa_T} \]

    This equation is very useful in calculating \(C_v\) from measurements of \(C_p\) and \(\alpha\) and \( \kappa_T\). Further, for all substances, \( \kappa_T \;>\; 0\). Thus, we see from this equation that \(C_p ≥ C_v\). (The result \( \kappa_T \;>\; 0\) can be proved in statistical mechanics.)

    In the \(T dS\) equations, if \(dT\), \(dV\) and \(dp\) are related adiabatically, \(dS \;=\; 0\) and we get

    \[ C_p \;=\; T \biggl( \frac{\partial V}{\partial T} \biggr)_p \biggl( \frac{\partial p}{\partial T} \biggr)_S,\;\;\;\; C_v \;=\; -T \biggl( \frac{\partial p}{\partial T} \biggr)_V \biggl( \frac{\partial V}{\partial T} \biggr)_S \]

    This gives

    \[ \frac{C_p}{C_v} \;=\; - \biggl( \frac{\partial V}{\partial T} \biggr)_p \biggl( \frac{\partial p}{\partial T} \biggr)_S \biggl[ \biggl( \frac{\partial p}{\partial T} \biggr)_V \biggl( \frac{\partial V}{\partial T} \biggr)_S \biggr]^{-1} \]

    We have the following relations among the terms involved in this expression,

    \[ \biggl( \frac{\partial p}{\partial T} \biggr)_S \;=\; \biggl( \frac{\partial V}{\partial T} \biggr)_S \biggl( \frac{\partial p}{\partial V} \biggr)_S \;=\; \biggl( \frac{\partial V}{\partial T} \biggr)_S \frac{1}{V \kappa_S} \\ \biggl( \frac{\partial V}{\partial T} \biggr)_p \;=\; \biggl( \frac{\partial p}{\partial T} \biggr)_V \biggl( \frac{\partial T}{\partial p} \biggr)_V \biggl( \frac{\partial V}{\partial T} \biggr)_p \;=\; -\biggl( \frac{\partial p}{\partial T} \biggr)_V \frac{1}{\bigl( \frac{\partial p}{\partial V} \bigr)_T} \;=\; \biggl( \frac{\partial p}{\partial T} \biggr)_V V \kappa_T \]

    Using these we find

    \[ \frac{C_p}{C_v} \;=\; \frac{\kappa_T}{\kappa_S}\]

    Going back to the Maxwell relations and using the expressions for \(T dS\), we find

    \[dU \;=\; C_vdT \;+\; \biggl[T \biggl( \frac{\partial p}{\partial T} \biggr)_V -p \biggr]dV \\ dH \;=\; C_pdT \;+\; \biggl[V- T \biggl( \frac{\partial V}{\partial T} \biggr)_p \biggr]dp \]

    these immediately yield the relations

    \[ C_v \;=\; \biggl( \frac{\partial U}{\partial T} \biggr)_V,\;\;\;\;C_p \;=\; \biggl( \frac{\partial H}{\partial T} \biggr)_p \\ \biggl( \frac{\partial U}{\partial V} \biggr)_T \;=\; T \biggl( \frac{\partial p}{\partial T} \biggr)_V -p \;\;\;\;\;\;\; \biggl( \frac{\partial H}{\partial p} \biggr)_T \;=\; V- T \biggl( \frac{\partial V}{\partial T} \biggr)_p \]

    Gibbs-Helmholtz Relation

    Since the Helmholtz free energy is defined as \(F = U − T S\),

    \[dF \;=\; dU \;−\; T dS \;−\; SdT \;=\; −S dT \;−\; p dV\]

    This gives immediately

    \[S \;=\; -\biggl( \frac{\partial F}{\partial T} \biggr)_V,\;\;\;\; p \;=\; -\biggl( \frac{\partial F}{\partial V} \biggr)_T \]

    Using this equation for entropy, we find

    \[U \;=\; F \;+\; T S \;=\; F \;−\; T \biggl( \frac{\partial F}{\partial T} \biggr)_V \]

    This is known as the Gibbs-Helmholtz relation. If \(F\) is known as a function of \(T\) and \(V\), we can use these to obtain \(S\), \(p\) and \(U\). Thus, all thermodynamic variables can be obtained from \(F\) as a function of \(T\) and \(V\).


    This page titled 6.2: Other Relations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by V. Parameswaran Nair via source content that was edited to the style and standards of the LibreTexts platform.