6.1: Maxwell Relations
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}
( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\kernel}{\mathrm{null}\,}
\newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}}
\newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}}
\newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}
\newcommand{\vectorA}[1]{\vec{#1}} % arrow
\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow
\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vectorC}[1]{\textbf{#1}}
\newcommand{\vectorD}[1]{\overrightarrow{#1}}
\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}
\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}For a system with one constituent with fixed number of particles, from the first and second laws, and from Equation 5.1.10, we have the basic relations
dU\;=\;TdS\;-\;pdV \\ dH\;=\;TdS\;-\;Vdp \\ dF\;=\;-SdT\;-\;pdV \\ dG\;=\;-SdT\;-\;Vdp \label{6.1.1}
The quantities on the left are all perfect differentials. For a general differential dR of the form
dR = Xdx + Y dy
to be a perfect differential, the necessary and sufficient condition is
\biggl( \frac{\partial X}{\partial y} \biggr)_x \;=\; \biggl( \frac{\partial Y}{\partial x} \biggr)_y \label{6.1.3}
Applying this to the four differentials in \ref{6.1.1}, we get
\biggl( \frac{\partial T}{\partial V} \biggr)_S \;=\; -\biggl( \frac{\partial p}{\partial S} \biggr)_V \\ \biggl( \frac{\partial T}{\partial p} \biggr)_S \;=\; \biggl( \frac{\partial V}{\partial S} \biggr)_p \\ \biggl( \frac{\partial S}{\partial V} \biggr)_T \;=\; \biggl( \frac{\partial p}{\partial T} \biggr)_V \\ \biggl( \frac{\partial S}{\partial p} \biggr)_T \;=\; -\biggl( \frac{\partial V}{\partial T} \biggr)_p
These four relations are called the Maxwell relations.
A Mathematical Result
Let X, Y, Z be three variables, of which only two are independent. Taking Z to be a function of X and Y, we can write
dZ\;=\; \biggl( \frac{\partial Z}{\partial X} \biggr)_Y dX \;+\; \biggl( \frac{\partial Z}{\partial Y} \biggr)_X dY \label{6.1.5}
If now we take X and Z as the independent variables, we can write
dY\;=\; \biggl( \frac{\partial Y}{\partial X} \biggr)_Y dX \;+\; \biggl( \frac{\partial Y}{\partial Z} \biggr)_X dZ
Upon substituting this result into \ref{6.1.5}, we get
dZ\;=\; \biggl[ \biggl( \frac{\partial Z}{\partial X} \biggr)_Y \;+\; \biggl( \frac{\partial Z}{\partial Y} \biggr)_X \biggl( \frac{\partial Y}{\partial X} \biggr)_Z \biggr]dX \;+\; \biggl( \frac{\partial Z}{\partial Y} \biggr)_X \biggl( \frac{\partial Y}{\partial Z} \biggr)_X dZ
Since we are considering X and Z as independent variables now, this equation immediately yields the relations
\biggl( \frac{\partial Z}{\partial Y} \biggr)_X \biggl( \frac{\partial Y}{\partial Z} \biggr)_X dZ \;\;=\;\;1 \\ \biggl( \frac{\partial Z}{\partial X} \biggr)_Y \;+\; \biggl( \frac{\partial Z}{\partial Y} \biggr)_X \biggl( \frac{\partial Y}{\partial X} \biggr)_Z \;\;=\;\;0
These relations can be rewritten as
\biggl( \frac{\partial Z}{\partial Y} \biggr)_X \;\;=\;\; \frac{1}{\bigl( \frac{dY}{dZ} \bigr)_X} \\ \biggl( \frac{\partial X}{\partial Z} \biggr)_Y \biggl( \frac{\partial Z}{\partial Y} \biggr)_X \biggl( \frac{\partial Y}{\partial X} \biggr)_Z \;\;=\;\;-1 \label{6.1.9}