Skip to main content
Physics LibreTexts

16.B: Some Equations and Constants

  • Page ID
    17467
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Physical Constants

    Table B.1: Physical constants
    Name Symbol Value
    Speed of light \(c\) \(3.00 \cdot 10^8 m/s\)
    Elementary charge \(e\) \(1.60 \cdot 10^{-19} C\)

    Electron mass

    \(m_e\) \(9.11 \cdot 10^{-31} kg = 0.511 MeV/c^2\)
    Proton mass \(m_p\) \(1.67 \cdot 10^{-27} kg = 938 MeV/c^2\)
    Gravitational constant \(G\) \(6.67 \cdot 10^{-11} N \cdot m^2 /kg^2\)
    Gravitational acceleration \(g\) \(9.81 m/s^2\)
    Boltzmann's Constant \(k_B\) \(1.38 \cdot 10^{-23} J/K\)
    Planck's Constant

    \(h\)

    \(\hbar = h /2 \pi\)

    \(6.63 \cdot 10^{-34} J \cdot s\)

    \(1.05 \cdot 10^{-34} J \cdot s\)

    Moments of Inertia

    Table B.2: Moments of inertia, all about axes of symmetry through the center of mass.
    Object Moment of Inertia
    Thin stick (length L) \(\frac{1}{12} M L^2\)
    Ring of hollow cylinder (radius R) \(M R^2\)
    Disk or solid cylinder (radius R) \(\frac{1}{2} M R^2\)
    Hollow sphere (radius R) \(\frac{2}{3} M R^2\)
    Solid sphere (radius R) \(\frac{2}{5} M R^2\)
    Rectangle (size \(a \times b\)), perpendicular axis \(\frac{1}{12} M (a^2 + b^2)\)
    Rectangle (size \(a \times b\)), axis parallel to side b \(\frac{1}{12} M a^2\)

    Solar System Objects

    Table B.3: Characteristics of the Sun, Earth and Moon.
    Sun Earth Moon
    Mass (kg) \(1.99 \cdot 10^{30}\) \(5.97 \cdot 10^{24}\) \(7.35 \cdot 10^{22}\)
    Mean radius (m) \(6.96 \cdot 10^{8}\) \(6.37 \cdot 10^{6}\) \(1.74 \cdot 10^{6}\)
    Orbital period (s)

    \(6 \cdot 10^{15}\)

    (200 My)

    \(3.16 \cdot 10^{7}\)

    (365.25 days)

    \(2.36 \cdot 10^{6}\)

    (27.3 days)

    Mean orbital radius (m) \(2.6 \cdot 10^{20}\) \(1.50 \cdot 10^{11}\) \(3.85 \cdot 10^{8}\)
    Mean density (kg/m3) \(1.4 \cdot 10^{3}\) \(5.5 \cdot 10^{3}\) \(3.3 \cdot 10^{3}\)
    Table B.4: Properties of a number of solar system objects. Equatorial radii and masses are compared to those of Earth (see Table B.3). Orbital properties are around primary (the sun for (dwarf) planets, the planet for moons). Orbital radii and periods for planets again compared to Earth, for moons in kilograms and days. Rotation period for all objects in days. Inclination and axial tilt in degrees. Data from NASA planetary fact sheets [31].
    Name Symbol Equatorial radius Mass Mean orbit radius Orbital period Inclination Orbital eccentricity Rotation period Confirmed moons Axial tilt
    Mercury mercury.PNG 0.382 0.06 0.39 0.24 3.38 0.206 58.64 0 0.04
    Venus venus.PNG 0.949 0.82 0.72 0.62 3.86 0.007 -243.02 0 177.36
    Earth earth.PNG 1 1 1 1 7.25 0.017 1 1 23.44
    Moon moon.PNG 0.272 0.0123 384399 27.32158 18.29-28.58 0.0549 27.32158 0 6.68
    Mars mars.PNG 0.532 0.107 1.52 1.88 5.65 0.093 1.03 2 25.19
    Ceres 0.0742 0.00016 2.766 4.599 10.59 0.08 0.3781 0 4
    Jupiter jupiter.PNG 11.209 317.8 5.2 11.86 6.09 0.048 0.41 69 3.13
    Io 0.285 0.015 421600 1.769 0.04 0.0041 1.769 0 0
    Europa 0.246 0.008 670900 3.551 0.47 0.009 3.551 0 0
    Ganymede 0.423 0.025 1070400 7.155 1.85 0.0013 7.155 0 0
    Callisto 0.378 0.018 1882700 16.689 0.2 0.0074 16.689 0 0
    Saturn saturn.PNG 9.449 95.2 9.54 29.46 5.51 0.054 0.43 62 26.73
    Titan 0.404 0.023 1221870 15.945 0.33 0.0288 15.945 0 0
    Uranus uranus.PNG 4.007 14.6 19.22 84.01 6.48 0.047 -0.72 27 97.77
    Oberon 0.119 0.00051 583519 13.46 0.1 0.0014 13.46 0 0
    Neptune neptune.PNG 3.883 17.2 30.06 164.8 6.43 0.009 0.67 14 28.32
    Triton 0.212 0.00358 354759 5.877 157 0.00002 5.877 0 0
    Pluto pluto.PNG 0.186 0.0022 39.482 247.9 17.14 0.25 6.39 5 119.59
    Charon 0.095 0.00025 17536 6.387 0.001 0.0022 6.387 0 unknown
    Haumea 0.13 0.0007 43.335 285.4 28.19 0.19 0.167 2 unknown
    Makemake 0.11 unknown 45.792 309.9 28.96 0.16 unknown 1 unknown
    Eris 0.18 0.0028 67.668 557 44.19 0.44 unknown 1 unknown

    Equations

    B.4.1 Vector Derivatives

    Gradient:

    \[\nabla f(\boldsymbol{r})=\nabla f(x, y, z)=\left(\begin{array}{c}
    \partial_{x} f \\
    \partial_{y} f \\
    \partial_{z} f
    \end{array}\right)=\left(\frac{\partial f}{\partial x} \hat{x}+\frac{\partial f}{\partial y} \hat{y}+\frac{\partial f}{\partial z} \hat{z}\right)\]

    Divergence:

    \[\nabla \cdot \boldsymbol{v}=\left(\partial_{x}, \partial_{y}, \partial_{z}\right) \cdot\left(\begin{array}{c}
    v_{x} \\
    v_{y} \\
    v_{z}
    \end{array}\right)=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}\]

    Curl:

    \[\nabla \times \boldsymbol{A}=\left(\partial_{x}, \partial_{y}, \partial_{z}\right) \times\left(\begin{array}{c}
    A_{x} \\
    A_{y} \\
    A_{z}
    \end{array}\right)=\left(\begin{array}{c}
    \partial_{y} A_{z}-\partial_{z} A_{y} \\
    \partial_{z} A_{x}-\partial_{x} A_{z} \\
    \partial_{x} A_{y}-\partial_{y} A_{x}
    \end{array}\right)\]

    B.4.2 Special Relativity

    Lorentz transformations for the coordinates of a frame S' that moves with a speed u in the positive x-direction of frame S:

    \[\begin{align}
    x^{\prime} &=\gamma(u)\left(x-\frac{u}{c} c t\right) \\
    c t^{\prime} &=\gamma(u)\left(c t-\frac{u}{c} x\right) \\
    \gamma(u) &=\frac{1}{\sqrt{1-(u / c)^{2}}}
    \end{align}\]

    Velocity addition in a relativistic system:

    \[v_{x}=\frac{u+v_{x}^{\prime}}{1+u v_{x}^{\prime} / c^{2}} \quad \text { (longitudinal) } , v_{y}=\frac{1}{\gamma(u)} \frac{v_{y}^{\prime}}{1+u v_{x}^{\prime} / c^{2}} \quad \text { (transversal) }\]


    This page titled 16.B: Some Equations and Constants is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Timon Idema (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?