8.2: Potential Energy
- Page ID
- 32970
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We now address Newtonian mechanics in the case where the force on a particle is conservative. A conservative force is one that can be derived from a so-called potential energy U. We assume that the potential energy of the particle depends only on its position. The force is obtained from the potential energy by the equation
\[F=-\frac{d U}{d x}\label{8.2}\]
Using this equation we write Newton’s second law as
\[-\frac{d U}{d x}=m a\label{8.3}\]
We then notice that the acceleration can be written in terms of the x derivative along the particle’s trajectory of \(v^{2} / 2:\):
\[a=\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=\frac{d v}{d x} v=\frac{1}{2} \frac{d v^{2}}{d x}\label{8.4}\]
The last step in the above derivation can be verified by applying the product rule: \(\mathrm{dv}^{2} / \mathrm{dt}=\mathrm{d}(\mathrm{vv}) / \mathrm{dt}=\mathrm{v}(\mathrm{dv} / \mathrm{dt})+(\mathrm{dv} / \mathrm{dt}) \mathrm{v}=2 \mathrm{v}(\mathrm{dv} / \mathrm{dt})\). Putting equations (\ref{8.3}) and (\ref{8.4}) together, we find that \(\mathrm{d}\left(\mathrm{mv}^{2} / 2+\mathrm{U}\right) / \mathrm{dt}=0\), which implies that \(m v^{2} / 2+U\) is constant. We call this constant the total energy E and the quantity \(\mathrm{K}=\mathrm{mv}^{2} / 2\) the kinetic energy. We thus have the principle of conservation of energy for conservative forces:
\[E=K+U=\text { constant. }\label{8.5}\]

Recall that in quantum mechanics the momentum is related to the group velocity \(\mathrm{u}_{\mathrm{g}}\) by
\[\Pi=m u_{g} \quad \text { (momentum) }\label{8.6}\]
in the nonrelativistic case. Equating the group velocity to \(v\) and eliminating it in the kinetic energy results in an alternate expression for this quantity:
\[K \equiv \frac{1}{2} m u_{g}^{2}=\frac{\Pi^{2}}{2 m} \quad \text { (kinetic energy) }\label{8.7}\]
Since the total energy E is constant or conserved, increases in the potential energy coincide with decreases in the kinetic energy and vice versa, as is illustrated in Figure \(\PageIndex{1}\):. In classical mechanics the kinetic energy cannot be negative, since it is the product of half the mass and the square of the velocity, both of which are positive. Thus, a particle with total energy E and potential energy \(U\) is forbidden to venture into regions in which the kinetic energy \(\mathrm{K}=\mathrm{E}-\mathrm{U}\) is less than zero.
The points at which the kinetic energy is zero are called turning points. This is because a particle decreases in speed as it approaches a turning point, stops there for an instant, and reverses direction. Note also that a particle with a given total energy always has the same speed at some point x regardless of whether it approaches this point from the left or the right:
\[\text { speed }=\left|u_{g}\right|=\left|\pm[2(E-U) / m]^{1 / 2}\right|\label{8.8}\]
Gravity as a Conservative Force
An example of a conservative force is gravity. An object of mass m near the surface of the earth has the gravitational potential energy
\[U=m g z \quad \text { (gravity near earth's surface) }\label{8.9}\]
where \(z\) is the height of the object above some reference point such as the earth’s surface and \(g=9.8 \mathrm{~m} \mathrm{~s}^{-2}\) is the local value of the gravitational field near the surface. Notice that the gravitational potential energy increases upward. The speed of the object in this case is \(\left|u_{g}\right|=[2(E-m g z) / m]^{1 / 2}\). If \(\left|\mathrm{u}_{\mathrm{g}}\right|\) is known to equal the constant value \(\mathrm{u}_{0}\) at elevation z = 0, then equations (\ref{8.8}) and (\ref{8.9}) tell us that \(\mathrm{u}_{0}=(2 \mathrm{E} / \mathrm{m})^{1 / 2} \text { and }\left|\mathrm{u}_{\mathrm{g}}\right|=\left(\mathrm{u}_{0}^{2}-2 \mathrm{~g} \mathrm{z}\right)^{1 / 2}\).
There are certain types of questions which energy conservation cannot directly answer. For instance, if an object is released at elevation h with zero velocity at t = 0, at what time will it reach z = 0 under the influence of gravity? In such cases it is often easiest to return to Newton’s second law. Since the force on the object is F = -dU∕dz = -mg in this case, we find that the acceleration is \(a=F / m=-m g / m=-g\). However, \(a=d u / d t=d^{2} z / d t^{2}\), so
\[u=-g t+C_{1} \quad z=-g t^{2} / 2+C_{1} t+C_{2} \quad \text { (constant gravity) }\label{8.10}\]
where \(\mathrm{C}_{1} \text { and } \mathrm{C}_{2}\) are constants to be determined by the initial conditions. These results can be verified by differentiating to see if the original acceleration is recovered. Since \(\mathrm{u}=0 \text { and } z=\mathrm{h} \text { at } t=0\), we have \(\mathrm{C}_{1}=0 \text { and } \mathrm{C}_{2}=\mathrm{h}\). With these results it is easy to show that the object reaches \(z=0\) when \(\mathrm{t}=(2 \mathrm{~h} / \mathrm{g})^{1 / 2}\).