Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

21.1: Horizontal Block and Vertical Block

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}

Consider the following problem: a block of mass m_{1} is on a frictionless horizontal surface, and connected by a string, through a pulley, to a mass m_{2} hanging vertically (Figure \PageIndex{1}). (We assume the string is unbreakable, unstretchable, and of negligible mass.) What is the acceleration of the system?

clipboard_e09aa45406154d646e1100712ae68759d.png
Figure \PageIndex{1}: Horizontal and vertical pulley connected by a string.

First, we recognize that the block m_{1} will accelerate to the right, and block m_{2} downward, with the same acceleration a, since the two blocks are tied together. Next, consider the forces on block m_{1} : it has a weight m_{1} g, and is acted upon by a normal force, also of magnitude m_{1} g, so that the net force in the vertical direction is zero. This is as expected, since the block is not accelerating in the vertical direction. In the horizontal direction, the only force acting on m_{1} is the string tension T. Thus for m_{1}, Newton's second law gives, in the horizontal direction,

\Sigma_{i} F_{i}=m_{1} a \quad \Rightarrow \quad T=m_{1} a

There are no horizontal forces acting on mass m_{2}, but there are two vertical forces: the upward tension T (equal to the tension acting on m_{1} ) and the downward weight force m g. Then Newton's second law for m_{2}, in the vertical (downward) direction, is

\Sigma_{i} F_{i}=m_{2} a \quad \Rightarrow \quad m_{2} g-T=m_{2} a

This gives us two simultaneous equations in the two unknowns a and T. Adding the two equations will eliminate the tension T; we can then solve for the acceleration a to find

a=\frac{m_{2}}{m_{1}+m_{2}} g

And then by Eq. \PageIndex{1}, the tension in the string is

T=\frac{m_{1} m_{2}}{m_{1}+m_{2}} g

Now let's consider the same problem, but this time we'll include friction acting on the horizontal block. In this case, Newton's second law for m_{1} (Eq. \PageIndex{1}) will include a frictional force f=\mu n=\mu m_{1} g (where \mu is the coefficient of (kinetic) friction) acting to the left, and becomes

\Sigma_{i} F_{i}=m_{1} a \quad \Rightarrow \quad T-\mu m_{1} g=m_{1} a

Newton's second law applied to mass m_{2} is the same as before:

\Sigma_{i} F_{i}=m_{2} a \quad \Rightarrow \quad m_{2} g-T=m_{2} a

Adding these two equations to eliminate the tension T, we find the acceleration a to be

a=\frac{m_{2}-\mu m_{1}}{m_{1}+m_{2}} g

and the tension to be (using Eq. \PageIndex{5}),

T=\frac{(1+\mu) m_{1} m_{2}}{m_{1}+m_{2}} g

Notice that these last two equations reduce to their frictionless counterparts when \mu=0.


21.1: Horizontal Block and Vertical Block is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?