66.2: Trigonometry
( \newcommand{\kernel}{\mathrm{null}\,}\)
Basic Formulæ
sin2θ+cos2θ≡1sec2θ≡1+tan2θcsc2θ≡1+cot2θ
Angle Addition Formulæ
sin(α±β)≡sinαcosβ±cosαsinβcos(α±β)≡cosαcosβ∓sinαsinβtan(α±β)≡tanα±tanβ1∓tanαtanβ
Double-Angle Formulæ
sin2θ≡2sinθcosθ≡2tanθ1+tan2θcos2θ≡cos2θ−sin2θ≡1−2sin2θ≡2cos2θ−1≡1−tan2θ1+tan2θtan2θ≡2tanθ1−tan2θ
Triple-Angle Formulæ
sin3θ≡3sinθ−4sin3θcos3θ≡4cos3θ−3cosθtan3θ≡3tanθ−tan3θ1−3tan2θcot3θ≡cot3θ−3cotθ3cot2θ−1
Quadruple-Angle Formulæ
sin4θ≡4cos3θsinθ−4cosθsin3θcos4θ≡cos4θ−6cos2θsin2θ+sin4θtan4θ≡4tanθ−4tan3θ1−6tan2θ+tan4θcot4θ≡cot4θ−6cot2θ+14cot3θ−4cotθ
Half-Angle Formulæ
sinθ2≡±√1−cosθ2cosθ2≡±√1+cosθ2tanθ2≡sinθ1+cosθ≡1−cosθsinθ
Products of Sines and Cosines
sinαcosβ≡12[sin(α+β)+sin(α−β)]cosαsinβ≡12[sin(α+β)−sin(α−β)]cosαcosβ≡12[cos(α+β)+cos(α−β)]sinαsinβ≡−12[cos(α+β)−cos(α−β)]
Sums and Differences of Sines and Cosines
sinα+sinβ≡2sinα+β2cosα−β2sinα−sinβ≡2cosα+β2sinα−β2cosα+cosβ≡2cosα+β2cosα−β2cosα−cosβ≡−2sinα+β2sinα−β2
Power Reduction Formulæ
sin2θ≡12(1−cos2θ)cos2θ≡12(1+cos2θ)tan2θ≡1−cos2θ1+cos2θ
Other Formulæ
tanθ≡cotθ−2cot2θ
Trig Cheat Sheet Paul Dawkins
Exact values of trigonometric functions at 3∘ intervals. (Ref. [6])
\theta | \sin \theta | \cos \theta | \tan \theta |
---|---|---|---|
\(0^{\circ}=0 \pi | 0 | 1 | 0 |
3∘=π60 | 116[(√6+√2)(√5−1)−2(√3−1)√5+√5] | 116[2(√3+1)√5+√5+(√6−√2)(√5−1)] | 14(√5−√3)(√3−1)(√10+2√5−√5−1) |
6∘=π30 | 18(√30−6√5−√5−1) | 18(√15+√3+√10−2√5) | 12(√10−2√5−√15+√3) |
9∘=π20 | 18(√10+√2−2√5−√5) | 18(√10+√2+2√5−√5) | √5+1−√5+2√5 |
12∘=π15 | 18(√10+2√5−√15+√3) | 18(√30+6√5+√5−1) | 12(3√3−√15−√50−22√5) |
15∘=π12 | 14(√6−√2) | 14(√6+√2) | 2−√3 |
18∘=π10 | 14(√5−1) | 14√10+2√5 | 15√25−10√5 |
21∘=7π60 | 116[2(√3+1)√5−√5−(√6−√2)(√5+1)] | 116[(√6+√2)(√5+1)+2(√3−1)√5−√5] | 14(√5−√3)(√3+1)(√10−2√5−√5+1) |
24∘=2π15\) | 18(√15+√3−√10−2√5) | 18(√30−6√5+√5+1) | 12(√50+22√5−3√3−√15) |
27∘=3π20 | 18(2√5+√5−√10+√2) | 18(2√5+√5+√10−√2) | √5−1−√5−2√5 |
30∘=π6 | 12 | 12√3 | 13√3 |
33∘=11π60 | 116[(√6+√2)(√5−1)+2(√3−1)√5+√5] | 116[2(√3+1)√5+√5−(√6−√2)(√5−1)] | 14(√5−√3)(√3−1)(√10+2√5+√5+1) |
36∘=π5 | 14√10−2√5 | 14(√5+1) | √5−2√5 |
39∘=13π60 | 116[(√6+√2)(√5+1)−2(√3−1)√5−√5] | 116[2(√3+1)√5−√5+(√6−√2)(√5+1)] | 14(√5+√3)(√3−1)(√10−2√5−√5+1) |
42∘=7π30 | 18(√30+6√5−√5+1) | 18(√10+2√5+√15−√3) | 12(√15+√3−√10+2√5) |
45∘=π4 | 12√2 | 12√2 | 1 |
48∘=4π15 | 18(√10+2√5+√15−√3) | 18(√30+6√5−√5+1) | 12(3√3−√15+√50−22√5) |
51∘=17π60 | 116[2(√3+1)√5−√5+(√6−√2)(√5+1)] | 116[(√6+√2)(√5+1)−2(√3−1)√5−√5] | 14(√5−√3)(√3+1)(√10−2√5+√5−1) |
54∘=3π10 | 14(√5+1) | 14√10−2√5 | 15√25+10√5 |
57∘=19π60 | 116[2(√3+1)√5+√5−(√6−√2)(√5−1)] | 116[(√6+√2)(√5−1)+2(√3−1)√5+√5] | 14(√5+√3)(√3+1)(√10+2√5−√5−1) |
60∘=π3 | 12√3 | 12 | √3 |
63∘=7π20 | 18(2√5+√5+√10−√2) | 18(2√5+√5−√10+√2) | √5−1+√5−2√5 |
66∘=11π30 | 18(√30−6√5+√5+1) | 18(√15+√3−√10−2√5) | 12(√10−2√5+√15−√3) |
69∘=2360π | 116[(√6+√2)(√5+1)+2(√3−1)√5−√5] | 116[2(√3+1)√5−√5−(√6−√2)(√5+1)] | 14(√5+√3)(√3−1)(√10−2√5+√5−1) |
75∘=5π12 | 14(√6+√2) | 14(√6−√2) | 2+√3 |
78∘=13π30 | 18(√30+6√5+√5−1) | 18(√10+2√5−√15+√3) | 12(√15+√3+√10+2√5) |
81∘=19π20 | 18(√10+√2+2√5−√5) | 18(√10+√2−2√5−√5) | √5+1+√5+2√5 |
84∘=7π15 | 18(√15+√3+√10−2√5) | 18(√30−6√5−√5−1) | 12(√50+22√5+3√3+√15) |
87∘=29π60 | 116[2(√3+1)√5+√5+(√6−√2)(√5−1)] | 116[(√6+√2)(√5−1)−2(√3−1) \sqrt{5+\sqrt{5}}]\) | 14(√5+√3)(√3+1)(√10+2√5+√5+1) |
90∘=π2 | 1 | 0 | ∞ |