Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

66.2: Trigonometry

( \newcommand{\kernel}{\mathrm{null}\,}\)

Basic Formulæ

sin2θ+cos2θ1sec2θ1+tan2θcsc2θ1+cot2θ

Angle Addition Formulæ

sin(α±β)sinαcosβ±cosαsinβcos(α±β)cosαcosβsinαsinβtan(α±β)tanα±tanβ1tanαtanβ

Double-Angle Formulæ

sin2θ2sinθcosθ2tanθ1+tan2θcos2θcos2θsin2θ12sin2θ2cos2θ11tan2θ1+tan2θtan2θ2tanθ1tan2θ

Triple-Angle Formulæ

sin3θ3sinθ4sin3θcos3θ4cos3θ3cosθtan3θ3tanθtan3θ13tan2θcot3θcot3θ3cotθ3cot2θ1

Quadruple-Angle Formulæ

sin4θ4cos3θsinθ4cosθsin3θcos4θcos4θ6cos2θsin2θ+sin4θtan4θ4tanθ4tan3θ16tan2θ+tan4θcot4θcot4θ6cot2θ+14cot3θ4cotθ

Half-Angle Formulæ

sinθ2±1cosθ2cosθ2±1+cosθ2tanθ2sinθ1+cosθ1cosθsinθ

Products of Sines and Cosines

sinαcosβ12[sin(α+β)+sin(αβ)]cosαsinβ12[sin(α+β)sin(αβ)]cosαcosβ12[cos(α+β)+cos(αβ)]sinαsinβ12[cos(α+β)cos(αβ)]

Sums and Differences of Sines and Cosines

sinα+sinβ2sinα+β2cosαβ2sinαsinβ2cosα+β2sinαβ2cosα+cosβ2cosα+β2cosαβ2cosαcosβ2sinα+β2sinαβ2

Power Reduction Formulæ

sin2θ12(1cos2θ)cos2θ12(1+cos2θ)tan2θ1cos2θ1+cos2θ

Other Formulæ

tanθcotθ2cot2θ

Exact values of trigonometric functions at 3 intervals. (Ref. [6])

\theta \sin \theta \cos \theta \tan \theta
\(0^{\circ}=0 \pi 0 1 0
3=π60 116[(6+2)(51)2(31)5+5] 116[2(3+1)5+5+(62)(51)] 14(53)(31)(10+2551)
6=π30 18(306551) 18(15+3+1025) 12(102515+3)
9=π20 18(10+2255) 18(10+2+255) 5+15+25
12=π15 18(10+2515+3) 18(30+65+51) 12(331550225)
15=π12 14(62) 14(6+2) 23
18=π10 14(51) 1410+25 1525105
21=7π60 116[2(3+1)55(62)(5+1)] 116[(6+2)(5+1)+2(31)55] 14(53)(3+1)(10255+1)
24=2π15\) 18(15+31025) 18(3065+5+1) 12(50+2253315)
27=3π20 18(25+510+2) 18(25+5+102) 51525
30=π6 12 123 133
33=11π60 116[(6+2)(51)+2(31)5+5] 116[2(3+1)5+5(62)(51)] 14(53)(31)(10+25+5+1)
36=π5 141025 14(5+1) 525
39=13π60 116[(6+2)(5+1)2(31)55] 116[2(3+1)55+(62)(5+1)] 14(5+3)(31)(10255+1)
42=7π30 18(30+655+1) 18(10+25+153) 12(15+310+25)
45=π4 122 122 1
48=4π15 18(10+25+153) 18(30+655+1) 12(3315+50225)
51=17π60 116[2(3+1)55+(62)(5+1)] 116[(6+2)(5+1)2(31)55] 14(53)(3+1)(1025+51)
54=3π10 14(5+1) 141025 1525+105
57=19π60 116[2(3+1)5+5(62)(51)] 116[(6+2)(51)+2(31)5+5] 14(5+3)(3+1)(10+2551)
60=π3 123 12 3
63=7π20 18(25+5+102) 18(25+510+2) 51+525
66=11π30 18(3065+5+1) 18(15+31025) 12(1025+153)
69=2360π 116[(6+2)(5+1)+2(31)55] 116[2(3+1)55(62)(5+1)] 14(5+3)(31)(1025+51)
75=5π12 14(6+2) 14(62) 2+3
78=13π30 18(30+65+51) 18(10+2515+3) 12(15+3+10+25)
81=19π20 18(10+2+255) 18(10+2255) 5+1+5+25
84=7π15 18(15+3+1025) 18(306551) 12(50+225+33+15)
87=29π60 116[2(3+1)5+5+(62)(51)] 116[(6+2)(51)2(31) \sqrt{5+\sqrt{5}}]\) 14(5+3)(3+1)(10+25+5+1)
90=π2 1 0

66.2: Trigonometry is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?