Skip to main content
Physics LibreTexts

66.2: Trigonometry

  • Page ID
    91932
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Basic Formulæ

    \[
    \begin{aligned}
    & \sin ^{2} \theta+\cos ^{2} \theta \equiv 1 \\
    & \sec ^{2} \theta \equiv 1+\tan ^{2} \theta \\
    & \csc ^{2} \theta \equiv 1+\cot ^{2} \theta
    \end{aligned}
    \]

    Angle Addition Formulæ

    \[
    \begin{aligned}
    & \sin (\alpha \pm \beta) \equiv \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
    & \cos (\alpha \pm \beta) \equiv \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
    & \tan (\alpha \pm \beta) \equiv \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}
    \end{aligned}
    \]

    Double-Angle Formulæ

    \[
    \begin{aligned}
    & \sin 2 \theta \equiv 2 \sin \theta \cos \theta \equiv \frac{2 \tan \theta}{1+\tan ^{2} \theta} \\
    & \cos 2 \theta \equiv \cos ^{2} \theta-\sin ^{2} \theta \equiv 1-2 \sin ^{2} \theta \equiv 2 \cos ^{2} \theta-1 \equiv \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} \\
    & \tan 2 \theta \equiv \frac{2 \tan \theta}{1-\tan ^{2} \theta}
    \end{aligned}
    \]

    Triple-Angle Formulæ

    \[
    \begin{aligned}
    \sin 3 \theta & \equiv 3 \sin \theta-4 \sin ^{3} \theta \\
    \cos 3 \theta & \equiv 4 \cos ^{3} \theta-3 \cos \theta \\
    \tan 3 \theta & \equiv \frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} \\
    \cot 3 \theta & \equiv \frac{\cot ^{3} \theta-3 \cot \theta}{3 \cot ^{2} \theta-1}
    \end{aligned}
    \]

    Quadruple-Angle Formulæ

    \[
    \begin{aligned}
    \sin 4 \theta & \equiv 4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta \\
    \cos 4 \theta & \equiv \cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta \\
    \tan 4 \theta & \equiv \frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta} \\
    \cot 4 \theta & \equiv \frac{\cot ^{4} \theta-6 \cot ^{2} \theta+1}{4 \cot ^{3} \theta-4 \cot \theta}
    \end{aligned}
    \]

    Half-Angle Formulæ

    \[
    \begin{aligned}
    \sin \frac{\theta}{2} & \equiv \pm \sqrt{\frac{1-\cos \theta}{2}} \\
    \cos \frac{\theta}{2} & \equiv \pm \sqrt{\frac{1+\cos \theta}{2}} \\
    \tan \frac{\theta}{2} & \equiv \frac{\sin \theta}{1+\cos \theta} \equiv \frac{1-\cos \theta}{\sin \theta}
    \end{aligned}
    \]

    Products of Sines and Cosines

    \[
    \begin{aligned}
    \sin \alpha \cos \beta & \equiv \frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)] \\
    \cos \alpha \sin \beta & \equiv \frac{1}{2}[\sin (\alpha+\beta)-\sin (\alpha-\beta)] \\
    \cos \alpha \cos \beta & \equiv \frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)] \\
    \sin \alpha \sin \beta & \equiv-\frac{1}{2}[\cos (\alpha+\beta)-\cos (\alpha-\beta)]
    \end{aligned}
    \]

    Sums and Differences of Sines and Cosines

    \[
    \begin{aligned}
    & \sin \alpha+\sin \beta \equiv 2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
    & \sin \alpha-\sin \beta \equiv 2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
    & \cos \alpha+\cos \beta \equiv 2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
    & \cos \alpha-\cos \beta \equiv-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}
    \end{aligned}
    \]

    Power Reduction Formulæ

    \[
    \begin{aligned}
    \sin ^{2} \theta & \equiv \frac{1}{2}(1-\cos 2 \theta) \\
    \cos ^{2} \theta & \equiv \frac{1}{2}(1+\cos 2 \theta) \\
    \tan ^{2} \theta & \equiv \frac{1-\cos 2 \theta}{1+\cos 2 \theta}
    \end{aligned}
    \]

    Other Formulæ

    \[\tan \theta \equiv \cot \theta-2 \cot 2 \theta\]

    Exact values of trigonometric functions at \(3^{\circ}\) intervals. (Ref. [6])

    \theta \sin \theta \cos \theta \tan \theta
    \(0^{\circ}=0 \pi 0 1 0
    \(3^{\circ}=\frac{\pi}{60}\) \(\frac{1}{16}[(\sqrt{6}+\sqrt{2})(\sqrt{5}-1)-2(\sqrt{3}-1) \sqrt{5+\sqrt{5}}]\) \(\frac{1}{16}[2(\sqrt{3}+1) \sqrt{5+\sqrt{5}}+(\sqrt{6}-\sqrt{2})(\sqrt{5}-1)]\) \(\frac{1}{4}(\sqrt{5}-\sqrt{3})(\sqrt{3}-1)(\sqrt{10+2 \sqrt{5}}-\sqrt{5}-1)\)
    \(6^{\circ}=\frac{\pi}{30}\) \(\frac{1}{8}(\sqrt{30-6 \sqrt{5}}-\sqrt{5}-1)\) \(\frac{1}{8}(\sqrt{15}+\sqrt{3}+\sqrt{10-2 \sqrt{5}})\) \(\frac{1}{2}(\sqrt{10-2 \sqrt{5}}-\sqrt{15}+\sqrt{3})\)
    \(9^{\circ}=\frac{\pi}{20}\) \(\frac{1}{8}(\sqrt{10}+\sqrt{2}-2 \sqrt{5-\sqrt{5}})\) \(\frac{1}{8}(\sqrt{10}+\sqrt{2}+2 \sqrt{5-\sqrt{5}})\) \(\sqrt{5}+1-\sqrt{5+2 \sqrt{5}}\)
    \(12^{\circ}=\frac{\pi}{15}\) \(\frac{1}{8}(\sqrt{10+2 \sqrt{5}}-\sqrt{15}+\sqrt{3})\) \(\frac{1}{8}(\sqrt{30+6 \sqrt{5}}+\sqrt{5}-1)\) \(\frac{1}{2}(3 \sqrt{3}-\sqrt{15}-\sqrt{50-22 \sqrt{5}})\)
    \(15^{\circ}=\frac{\pi}{12}\) \(\frac{1}{4}(\sqrt{6}-\sqrt{2})\) \(\frac{1}{4}(\sqrt{6}+\sqrt{2})\) \(2-\sqrt{3}\)
    \(18^{\circ}=\frac{\pi}{10}\) \(\frac{1}{4}(\sqrt{5}-1)\) \(\frac{1}{4} \sqrt{10+2 \sqrt{5}}\) \(\frac{1}{5} \sqrt{25-10 \sqrt{5}}\)
    \(21^{\circ}=\frac{7 \pi}{60}\) \(\frac{1}{16}[2(\sqrt{3}+1) \sqrt{5-\sqrt{5}}-(\sqrt{6}-\sqrt{2})(\sqrt{5}+1)]\) \(\frac{1}{16}[(\sqrt{6}+\sqrt{2})(\sqrt{5}+1)+2(\sqrt{3}-1) \sqrt{5-\sqrt{5}}]\) \(\frac{1}{4}(\sqrt{5}-\sqrt{3})(\sqrt{3}+1)(\sqrt{10-2 \sqrt{5}}-\sqrt{5}+1)\)
    \(24^{\circ}=\frac{2 \pi}{15}\)\) \(\frac{1}{8}(\sqrt{15}+\sqrt{3}-\sqrt{10-2 \sqrt{5}})\) \(\frac{1}{8}(\sqrt{30-6 \sqrt{5}}+\sqrt{5}+1)\) \(\frac{1}{2}(\sqrt{50+22 \sqrt{5}}-3 \sqrt{3}-\sqrt{15})\)
    \(27^{\circ}=\frac{3 \pi}{20}\) \(\frac{1}{8}(2 \sqrt{5+\sqrt{5}}-\sqrt{10}+\sqrt{2})\) \(\frac{1}{8}(2 \sqrt{5+\sqrt{5}}+\sqrt{10}-\sqrt{2})\) \(\sqrt{5}-1-\sqrt{5-2 \sqrt{5}}\)
    \(30^{\circ}=\frac{\pi}{6}\) \(\frac{1}{2}\) \(\frac{1}{2} \sqrt{3}\) \(\frac{1}{3} \sqrt{3}\)
    \(33^{\circ}=\frac{11 \pi}{60}\) \(\frac{1}{16}[(\sqrt{6}+\sqrt{2})(\sqrt{5}-1)+2(\sqrt{3}-1) \sqrt{5+\sqrt{5}}]\) \(\frac{1}{16}[2(\sqrt{3}+1) \sqrt{5+\sqrt{5}}-(\sqrt{6}-\sqrt{2})(\sqrt{5}-1)]\) \(\frac{1}{4}(\sqrt{5}-\sqrt{3})(\sqrt{3}-1)(\sqrt{10+2 \sqrt{5}}+\sqrt{5}+1)\)
    \(36^{\circ}=\frac{\pi}{5}\) \(\frac{1}{4} \sqrt{10-2 \sqrt{5}}\) \(\frac{1}{4}(\sqrt{5}+1)\) \(\sqrt{5-2 \sqrt{5}}\)
    \(39^{\circ}=\frac{13 \pi}{60}\) \(\frac{1}{16}[(\sqrt{6}+\sqrt{2})(\sqrt{5}+1)-2(\sqrt{3}-1) \sqrt{5-\sqrt{5}}]\) \(\frac{1}{16}[2(\sqrt{3}+1) \sqrt{5-\sqrt{5}}+(\sqrt{6}-\sqrt{2})(\sqrt{5}+1)]\) \(\frac{1}{4}(\sqrt{5}+\sqrt{3})(\sqrt{3}-1)(\sqrt{10-2 \sqrt{5}}-\sqrt{5}+1)\)
    \(42^{\circ}=\frac{7 \pi}{30}\) \(\frac{1}{8}(\sqrt{30+6 \sqrt{5}}-\sqrt{5}+1)\) \(\frac{1}{8}(\sqrt{10+2 \sqrt{5}}+\sqrt{15}-\sqrt{3})\) \(\frac{1}{2}(\sqrt{15}+\sqrt{3}-\sqrt{10+2 \sqrt{5}})\)
    \(45^{\circ}=\frac{\pi}{4}\) \(\frac{1}{2} \sqrt{2}\) \(\frac{1}{2} \sqrt{2}\) 1
    \(48^{\circ}=\frac{4 \pi}{15}\) \(\frac{1}{8}(\sqrt{10+2 \sqrt{5}}+\sqrt{15}-\sqrt{3})\) \(\frac{1}{8}(\sqrt{30+6 \sqrt{5}}-\sqrt{5}+1)\) \(\frac{1}{2}(3 \sqrt{3}-\sqrt{15}+\sqrt{50-22 \sqrt{5}})\)
    \(51^{\circ}=\frac{17 \pi}{60}\) \(\frac{1}{16}[2(\sqrt{3}+1) \sqrt{5-\sqrt{5}}+(\sqrt{6}-\sqrt{2})(\sqrt{5}+1)]\) \(\frac{1}{16}[(\sqrt{6}+\sqrt{2})(\sqrt{5}+1)-2(\sqrt{3}-1) \sqrt{5-\sqrt{5}}]\) \(\frac{1}{4}(\sqrt{5}-\sqrt{3})(\sqrt{3}+1)(\sqrt{10-2 \sqrt{5}}+\sqrt{5}-1)\)
    \(54^{\circ}=\frac{3 \pi}{10}\) \(\frac{1}{4}(\sqrt{5}+1)\) \(\frac{1}{4} \sqrt{10-2 \sqrt{5}}\) \(\frac{1}{5} \sqrt{25+10 \sqrt{5}}\)
    \(57^{\circ}=\frac{19 \pi}{60}\) \(\frac{1}{16}[2(\sqrt{3}+1) \sqrt{5+\sqrt{5}}-(\sqrt{6}-\sqrt{2})(\sqrt{5}-1)]\) \(\frac{1}{16}[(\sqrt{6}+\sqrt{2})(\sqrt{5}-1)+2(\sqrt{3}-1) \sqrt{5+\sqrt{5}}]\) \(\frac{1}{4}(\sqrt{5}+\sqrt{3})(\sqrt{3}+1)(\sqrt{10+2 \sqrt{5}}-\sqrt{5}-1)\)
    \(60^{\circ}=\frac{\pi}{3}\) \(\frac{1}{2} \sqrt{3}\) \(\frac{1}{2}\) \(\sqrt{3}\)
    \(63^{\circ}=\frac{7 \pi}{20}\) \(\frac{1}{8}(2 \sqrt{5+\sqrt{5}}+\sqrt{10}-\sqrt{2})\) \(\frac{1}{8}(2 \sqrt{5+\sqrt{5}}-\sqrt{10}+\sqrt{2})\) \(\sqrt{5}-1+\sqrt{5-2 \sqrt{5}}\)
    \(66^{\circ}=\frac{11 \pi}{30}\) \(\frac{1}{8}(\sqrt{30-6 \sqrt{5}}+\sqrt{5}+1)\) \(\frac{1}{8}(\sqrt{15}+\sqrt{3}-\sqrt{10-2 \sqrt{5}})\) \(\frac{1}{2}(\sqrt{10-2 \sqrt{5}}+\sqrt{15}-\sqrt{3})\)
    \(69^{\circ}=\frac{23}{60} \pi\) \(\frac{1}{16}[(\sqrt{6}+\sqrt{2})(\sqrt{5}+1)+2(\sqrt{3}-1) \sqrt{5-\sqrt{5}}]\) \(\frac{1}{16}[2(\sqrt{3}+1) \sqrt{5-\sqrt{5}}-(\sqrt{6}-\sqrt{2})(\sqrt{5}+1)]\) \(\frac{1}{4}(\sqrt{5}+\sqrt{3})(\sqrt{3}-1)(\sqrt{10-2 \sqrt{5}}+\sqrt{5}-1)\)
    \(75^{\circ}=\frac{5 \pi}{12}\) \(\frac{1}{4}(\sqrt{6}+\sqrt{2})\) \(\frac{1}{4}(\sqrt{6}-\sqrt{2})\) \(2+\sqrt{3}\)
    \(78^{\circ}=\frac{13 \pi}{30}\) \(\frac{1}{8}(\sqrt{30+6 \sqrt{5}}+\sqrt{5}-1)\) \(\frac{1}{8}(\sqrt{10+2 \sqrt{5}}-\sqrt{15}+\sqrt{3})\) \(\frac{1}{2}(\sqrt{15}+\sqrt{3}+\sqrt{10+2 \sqrt{5}})\)
    \(81^{\circ}=\frac{19 \pi}{20}\) \(\frac{1}{8}(\sqrt{10}+\sqrt{2}+2 \sqrt{5-\sqrt{5}})\) \(\frac{1}{8}(\sqrt{10}+\sqrt{2}-2 \sqrt{5-\sqrt{5}})\) \(\sqrt{5}+1+\sqrt{5+2 \sqrt{5}}\)
    \(84^{\circ}=\frac{7 \pi}{15}\) \(\frac{1}{8}(\sqrt{15}+\sqrt{3}+\sqrt{10-2 \sqrt{5}})\) \(\frac{1}{8}(\sqrt{30-6 \sqrt{5}}-\sqrt{5}-1)\) \(\frac{1}{2}(\sqrt{50+22 \sqrt{5}}+3 \sqrt{3}+\sqrt{15})\)
    \(87^{\circ}=\frac{29 \pi}{60}\) \(\frac{1}{16}[2(\sqrt{3}+1) \sqrt{5+\sqrt{5}}+(\sqrt{6}-\sqrt{2})(\sqrt{5}-1)]\) \(\frac{1}{16}[(\sqrt{6}+\sqrt{2})(\sqrt{5}-1)-2(\sqrt{3}-1)\) \sqrt{5+\sqrt{5}}]\) \(\frac{1}{4}(\sqrt{5}+\sqrt{3})(\sqrt{3}+1)(\sqrt{10+2 \sqrt{5}}+\sqrt{5}+1)\)
    \(90^{\circ}=\frac{\pi}{2}\) 1 0 \(\infty\)

    66.2: Trigonometry is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?