66.25: Fundamental Physical Constants — Extensive Listing
( \newcommand{\kernel}{\mathrm{null}\,}\)
Table 66.25.1: Universal Fundamental Constants
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
speed of light in vacuum | c |
299792458 |
m s−1 | exact |
vacuum magnetic permeability 4παℏ/e2c | μ0 | 1.25663706212(19)×10−6 | NA−2 | 1.5×10−10 |
μ0/(4π×10−7) | 1.00000000055(15) | NA−2 | 1.5×10−10 | |
vacuum electric permittivity 1/μ0c2 | ϵ0 | 8.8541878128(13)×10−12 | F m−1 | 1.5×10−10 |
characteristic impedance of vacuum μ0c | Z0 | 376.730313668(57) | Ω | 1.5×10−10 |
Newtonian constant of gravitation | G | 6.67430(15)×10−11 | m3 kg−1 s−2 | 2.2×10−5 |
G/ℏc | 6.70883(15)×10−39 | (GeV/c2)−2 | 2.2×10−5 | |
Planck constant* | h | 6.62607015×10−34 | J Hz−1 | exact |
4.135667696…×10−15 | eVHz−1 | exact | ||
ℏ | 1.054571817…×10−34 | Js | exact | |
6.582119569…×10−16 | eVs | exact | ||
ℏc | 197.3269804… | MeVfm | exact | |
Planck mass (ℏc/G)1/2 | mP | 2.176434(24)×10−8 | kg | 1.1×10−5 |
energy equivalent | mPc2 | 1.220890(14)×1019 | GeV | 1.1×10−5 |
Planck temperature (ℏc5/G)1/2/k | TP | 1.416784(16)×1032 | K | 1.1×10−5 |
Planck length ℏ/mPc=(ℏG/c3)1/2 | lP | 1.616255(18)×10−35 | m | 1.1×10−5 |
Planck time lP/c=(ℏG/c5)1/2 | tP | 5.391247(60)×10−44 | s | 1.1×10−5 |
Table 66.25.2: Electromagnetic Constants
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
elementary charge | e | 1.602176634×10−19 | C | exact |
e/ℏ | 1.519267447…×1015 | A J−1 | exact | |
magnetic flux quantum 2πℏ/(2e) | Φ0 | 2.067833848…×10−15 | Wb | exact |
conductance quantum 2e2/2πℏ | G0 | 7.748091729…×10−5 | S | exact |
inverse of conductance quantum | G−10 | 12906.40372… | Ω | exact |
Josephson constant 2e/h | KJ | 483597.8484…×109 | Hz V−1 | exact |
von Klitzing constant μ0c/2α=2πℏ/e2 | RK | 25812.80745… | Ω | exact |
Bohr magneton eℏ/2me | μB | 9.2740100783(28)×10−24 | J T−1 | 3.0×10−10 |
5.7883818060(17)×10−5 | eVT−1 | 3.0×10−10 | ||
μB/h | 1.39962449361(42)×1010 | Hz T−1 | 3.0×10−10 | |
μB/hc | 46.686447783(14) | [m−1 T−1]† | 3.0×10−10 | |
μB/k | 0.67171381563(20) | KT−1 | 3.0×10−10 | |
nuclear magneton eℏ/2mp | μN | 5.0507837461(15)×10−27 | J T−1 | 3.1×10−10 |
3.15245125844(96)×10−8 | eVT−1 | 3.1×10−10 | ||
μN/h | 7.6225932291(23) | MHzT−1 | 3.1×10−10 | |
μN/hc | 2.54262341353(78)×10−2 | [ m−1 T−1]† | 3.1×10−10 | |
μN/k | 3.6582677756(11)×10−4 | K T−1 | 3.1×10−10 |
Table 66.25.3: General Atomic and Nuclear Constants
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
fine-structure constant e2/4πϵ0ℏc | α | 7.2973525693(11)×10−3 | 1.5×10−10 | |
inverse fine-structure constant | α−1 | 137.035999084(21) | 1.5×10−10 | |
Rydberg frequency α2mec2/2h=Eh/2h | cR∞ | 3.2898419602508(64)×1015 | Hz | 1.9×10−12 |
energy equivalent | hcR∞ | 2.1798723611035(42)×10−18 | J | 1.9×10−12 |
13.605693122994(26) | eV | 1.9×10−12 | ||
Rydberg constant | R∞ | 10973731.568160(21) | [m−1]† | 1.9×10−12 |
Bohr radius ℏ/αmec=4πϵ0ℏ2/mee2 | a0 | 5.29177210903(80)×10−11 | m | 1.5×10−10 |
Hartree energy α2mec2=e2/4πϵ0a0=2hcR∞ | Eh | 4.3597447222071(85)×10−18 | J | 1.9×10−12 |
27.211386245988(53) | eV | 1.9×10−12 | ||
quantum of circulation | πℏ/me | 3.6369475516(11)×10−4 | m2 s−1 | 3.0×10−10 |
2πℏ/me | 7.2738951032(22)×10−4 | m2 s−1 | 3.0×10−10 |
Table 66.25.4: Electroweak Constants
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
Fermi coupling constant ‡ | GF/(ℏc)3 | 1.1663787(6)×10−5 | GeV−2 | 5.1×10−7 |
sin2θW=s2W≡1−(mW/mZ)2 | sin2θW | 0.22290(30) | 1.3×10−3 |
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
electron mass | me | 9.1093837015(28)×10−31 | kg | 3.0×10−10 |
5.48579909065(16)×10−4 | u | 2.9×10−11 | ||
energy equivalent | mec2 | 8.1871057769(25)×10−14 | J | 3.0×10−10 |
0.51099895000(15) | MeV | 3.0×10−10 | ||
electron-muon mass ratio | me/mμ | 4.83633169(11)×10−3 | 2.2×10−8 | |
electron-tau mass ratio | me/mτ | 2.87585(19)×10−4 | 6.8×10−5 | |
electron-proton mass ratio | me/mp | 5.44617021487(33)×10−4 | 6.0×10−11 | |
electron-neutron mass ratio | me/mn | 5.4386734424(26)×10−4 | 4.8×10−10 | |
electron-deuteron mass ratio | me/md | 2.724437107462(96)×10−4 | 3.5×10−11 | |
electron-triton mass ratio | me/mt | 1.819200062251(90)×10−4 | 5.0×10−11 | |
electron-helion mass ratio | me/mh | 1.819543074573(79)×10−4 | 4.3×10−11 | |
electron to alpha particle mass ratio | me/mα | 1.370933554787(45)×10−4 | 3.3×10−11 | |
electron charge to mass quotient | −e/me | −1.75882001076(53)×1011 | Ckg−1 | 3.0×10−10 |
electron molar mass NAme | M(e),Me | 5.4857990888(17)×10−7 | kg mol−1 | 3.0×10−10 |
reduced Compton wavelength ℏ/mec=αa0 | λC | 3.8615926796(12)×10−13 | m | 3.0×10−10 |
Compton wavelength | λC | 2.42631023867(73)×10−12 | [ m]† | 3.0×10−10 |
classical electron radius α2a0 | re | 2.8179403262(13)×10−15 | m | 4.5×10−10 |
Thomson cross section (8π/3)r2e | σe | 6.6524587321(60)×10−29 | m2 | 9.1×10−10 |
electron magnetic moment | μe | −9.2847647043(28)×10−24 | J T−1 | 3.0×10−10 |
to Bohr magneton ratio | μe/μB | −1.00115965218128(18) | 1.7×10−13 | |
to nuclear magneton ratio | μe/μN | −1838.28197188(11) | 6.0×10−11 | |
electron magnetic moment | ||||
anomaly |μe|/μB−1 | ae | 1.15965218128(18)×10−3 | 1.5×10−10 | |
electron g-factor (−2(1+ae)) | ge | −2.00231930436256(35) | 1.7×10−13 | |
electron-muon magnetic moment ratio | μe/μμ | 206.7669883(46) | 2.2×10−8 | |
electron-proton magnetic moment ratio electron to shielded proton magnetic |
μe/μp | −658.21068789(20) | 3.0×10−10 | |
moment ratio (H2O,sphere,25∘C) | μe/μ′p | −658.2275971(72)\) | 1.1×10−8 | |
electron-neutron magnetic moment ratio | μe/μn | 960.92050(23) | 2.4×10−7 | |
electron-deuteron magnetic moment ratio electron to shielded helion magnetic |
μe/μd | −2143.9234915(56) | 2.6×10−9 | |
moment ratio (gas, sphere, 25∘C ) | μe/μ′h | 864.058257(10) | 1.2×10−8 | |
electron gyromagnetic ratio 2|μe|/ℏ | γe | 1.76085963023(53)×1011 | s−1 T−1 | 3.0×10−10 |
28024.9514242(85) | MHzT−1 | 3.0×10−10 |
Table 66.25.6: Muon, mu−
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
muon mass | mμ | 1.883531627(42)×10−28 | kg | 2.2×10−8 |
0.1134289259(25) | u | 2.2×10−8 | ||
energy equivalent | 1.692833804(38)×10−11 | J | 2.2×10−8 | |
mμc2 | 105.6583755(23) | MeV | 2.2×10−8 | |
muon-electron mass ratio | mμ/me | 206.7682830(46) | 2.2×10−8 | |
muon-tau mass ratio | mμ/mτ | 5.94635(40)×10−2 | 6.8×10−5 | |
muon-proton mass ratio | mμ/mp | 0.1126095264(25) | 2.2×10−8 | |
muon-neutron mass ratio | mμ/mn | 0.1124545170(25) | 2.2×10−8 | |
muon molar mass NAmμ | M(μ),Mμ | 1.134289259(25)×10−4 | kg mol−1 | 2.2×10−8 |
reduced muon Compton wavelength ℏ/mμc | λC,μ | 1.867594306(42)×10−15 | m | 2.2×10−8 |
muon Compton wavelength | λC,μ | 1.173444110(26)×10−14 | [ m]† | 2.2×10−8 |
muon magnetic moment | μμ | −4.49044830(10)×10−26 | J T−1 | 2.2×10−8 |
to Bohr magneton ratio | μμ/μB | −4.84197047(11)×10−3 | 2.2×10−8 | |
to nuclear magneton ratio | μμ/μN | −8.89059703(20) | 2.2×10−8 | |
muon magnetic moment anomaly | 5.4×10−7 | |||
|μμ|/(eℏ/2mμ)−1 | aμ | 1.16592089(63)×10−3 | 6.3×10−10 | |
muon g-factor −2(1+aμ) | gμ | −2.0023318418(13) | 2.2×10−8 | |
muon-proton magnetic moment ratio | μμ/μp | −3.183345142(71) |
Table 66.25.7: Tau, tau−
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
tau mass | mτ | 3.16754(21)×10−27 | kg | 6.8×10−5 |
1.90754(13) | u | 6.8×10−5 | ||
energy equivalent | mτc2 | 2.84684(19)×10−10 | J | 6.8×10−5 |
1776.86(12) | MeV | 6.8×10−5 | ||
tau-electron mass ratio | mτ/me | 3477.23(23) | 6.8×10−5 | |
tau-muon mass ratio | mτ/mμ | 16.8170(11) | 6.8×10−5 | |
tau-proton mass ratio | mτ/mp | 1.89376(13) | 6.8×10−5 | |
tau-neutron mass ratio | mτ/mn | 1.89115(13) | 6.8×10−5 | |
tau molar mass NAmτ | MC,τ | 1.90754(13)×10−3 | kg mol−1 | 6.8×10−5 |
reduced tau Compton wavelength ℏ/mτc | λC,τ | 1.110538(75)×10−16 | [ m]† | 6.8×10−5 |
tau Compton wavelength | λC,τ | 6.97771(47)×10−16 | [m] | 6.8×10−5 |
Table 66.25.8: Proton, p
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
proton-tau mass ratio | mp/mτ | 0.528051(36) | 6.8×10−5 | |
proton-neutron mass ratio | mp/mn | 0.99862347812(49) | 4.9×10−10 | |
proton charge to mass quotient | e/mp | 9.5788331560(29)×107 | Ckg−1 | 3.1×10−10 |
proton molar mass NAmp | M(p),Mp | 1.00727646627(31)×10−3 | kg mol−1 | 3.1×10−10 |
reduced proton Compton wavelength ℏ/mpc | λC,p | 2.10308910336(64)×10−16 | \( m | 3.1×10−10 |
proton Compton wavelength | λC,p | 1.32140985539(40)×10−15 | [ m]† | 3.1×10−10 |
proton rms charge radius | rp | 8.414(19)×10−16 | m | 2.2×10−3 |
proton magnetic moment | μp | 1.41060679736(60)×10−26 | J T−1 | 4.2×10−10 |
to Bohr magneton ratio | μp/μB | 1.52103220230(46)×10−3 | 3.0×10−10 | |
to nuclear magneton ratio | μp/μN | 2.79284734463(82) | 2.9×10−10 | |
proton g-factor 2μp/μN | gp | 5.5856946893(16) | 2.9×10−10 | |
proton-neutron magnetic moment ratio | μp/μn | −1.45989805(34) | 2.4×10−7 | |
shielded proton magnetic moment |
μ′p | 1.410570560(15)×10−26 | J T−1 | 1.1×10−8 |
(H2O, sphere, 25∘C) | ||||
to Bohr magneton ratio | μ′p/μB | 1.520993128(17)×10−3 | 1.1×10−8 | |
to nuclear magneton ratio | μ′p/μN | 2.792775599(30) | 1.1×10−8 | |
proton magnetic shielding correction | ||||
1−μ′p/μp(H2O,sphere,25∘C) | σ′p | 2.5689(11)×10−5 | 4.2×10−4 | |
proton gyromagnetic ratio 2 μp/ℏ | γp | 2.6752218744(11) \times 10^8 | \mathrm{~s}^{-1} \mathrm{~T}^{-1} | 4.2 \times 10^{-10} |
42.577 478 518(18) | \mathrm{MHz} \mathrm{T}^{-1} | 4.2 \times 10^{-10} | ||
shielded proton gyromagnetic ratio | ||||
2 \mu_{\mathrm{p}}^{\prime} / \hbar\left(\mathrm{H}_2 \mathrm{O}\right., sphere, \left.25^{\circ} \mathrm{C}\right) | \gamma_{\mathrm{p}}^{\prime} | 2.675153151(29) \times 10^8 | \mathrm{~s}^{-1} \mathrm{~T}^{-1} | 1.1 \times 10^{-8} |
42.57638474(46) | \mathrm{MHz} \mathrm{T}^{-1} | 1.1 \times 10^{-8} |
Table \PageIndex{9}: Neutron, n
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
neutron mass | m_{\mathrm{n}} | 1.67492749804(95) \times 10^{-27} |
\mathrm{kg} |
5.7 \times 10^{-10} |
1.008 664 915 95(49) | \mathrm{u} | 4.8 \times 10^{-10} | ||
\quad energy equivalent | m_{\mathrm{n}} c^2 | 1.50534976287(86) \times 10^{-10} |
\mathrm{J} | 5.7 \times 10^{-10} |
939.565 420 52(54) | \mathrm{MeV} | 5.7 \times 10^{-10} | ||
neutron-electron mass ratio | m_{\mathrm{n}} / m_{\mathrm{e}} | 1838.68366173(89) | 4.8 \times 10^{-10} | |
neutron-muon mass ratio | m_{\mathrm{n}} / m_\mu | 8.89248406(20) | 2.2 \times 10^{-8} | |
neutron-tau mass ratio | m_{\mathrm{n}} / m_\tau | 0.528779(36) | 6.8 \times 10^{-5} | |
neutron-proton mass ratio | m_{\mathrm{n}} / m_{\mathrm{p}} | 1.00137841931(49) | 4.9 \times 10^{-10} | |
neutron-proton mass difference | m_{\mathrm{n}}-m_{\mathrm{p}} | 2.30557435(82) \times 10^{-30 } | \mathrm{kg} |
3.5 \times 10^{-7} |
1.38844933(49) \times 10^{-3} | \mathrm{u} | 3.5 \times 10^{-7} | ||
\quad energy equivalent | \left(m_{\mathrm{n}}-m_{\mathrm{p}}\right) c^2 | 2.07214689(74) \times 10^{-13} |
\mathrm{J} |
3.5 \times 10^{-7} |
1.29333236(46) | \mathrm{MeV} | 3.5 \times 10^{-7} | ||
neutron molar mass N_{\mathrm{A}} m_{\mathrm{n}} | M(\mathrm{n}), M_{\mathrm{n}} | 1.00866491560(57) \times 10^{-3} | \mathrm{~kg} \mathrm{~mol}^{-1} | 5.7 \times 10^{-10} |
reduced neutron Compton wavelength \hbar / m_{\mathrm{n}} c |
\( \lambda_{\mathrm{C}, \mathrm{n}\) | 2.1001941552(12) \times 10^{-16} |
\mathrm{m } | 5.7 \times 10^{-10} |
neutron Compton wavelength | \( \lambda_{\mathrm{C}, \mathrm{n}\) | 1.31959090581(75) \times 10^{-15} | [\mathrm{m}]^{\dagger} | 5.7 \times 10^{-10} |
neutron magnetic moment |
\mu_{\mathrm{n}} |
-9.6623651(23) \times 10^{-27} | \mathrm{~J} \mathrm{~T}^{-1} | 2.4 \times 10^{-7} |
\quad to Bohr magneton ratio | \mu_{\mathrm{n}} / \mu_{\mathrm{B}} | -1.04187563(25) \times 10^{-3} | 2.4 \times 10^{-7} | |
\quad to nuclear magneton ratio | \mu_{\mathrm{n}} / \mu_{\mathrm{N}} | -1.91304273(45) | 2.4 \times 10^{-7} | |
neutron g-factor 2 \mu_{\mathrm{n}} / \mu_{\mathrm{N}} | g_{\mathrm{n}} | -3.82608545(90) | 2.4 \times 10^{-7} | |
neutron-electron magnetic moment ratio | \mu_{\mathrm{n}} / \mu_{\mathrm{e}} | 1.04066882(25) \times 10^{-3} | 2.4 \times 10^{-7} | |
neutron-proton magnetic moment ratio | \mu_{\mathrm{n}} / \mu_{\mathrm{p}} | -0.68497934(16) | 2.4 \times 10^{-7} | |
neutron to shielded proton magnetic | ||||
\quad moment ratio \left(\mathrm{H}_2 \mathrm{O}\right., sphere, \left.25^{\circ} \mathrm{C}\right) | \mu_{\mathrm{n}} / \mu_{\mathrm{p}}^{\prime} | -0.68499694(16) | 2.4 \times 10^{-7} | |
neutron gyromagnetic ratio 2\left|\mu_{\mathrm{n}}\right| / \hbar | \gamma_{\mathrm{n}} | 1.83247171(43) \times 10^8 | \mathrm{~s}^{-1} \mathrm{~T}^{-1} | 2.4 \times 10^{-7} |
29.1646931(69) | \mathrm{MHz} \mathrm{T}^{-1} | 2.4 \times 10^{-7} |
Table \PageIndex{10}: Deuteron, d
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
deuteron mass | m_{\mathrm{d}} | 3.3435837768(10) \times 10^{-27} | kg | 3.1 \times 10^{-10} |
2.013553212544(15) | u | 7.4 \times 10^{-12} | ||
iivalent | m_{\mathrm{d}} c^2 | 3.00506323491(94) \times 10^{-10} | J | 3.1 \times 10^{-10} |
deuteron-electron mass ratio | m_{\mathrm{d}} / m_{\mathrm{e}} | 3670.4829676555(63) | MeV | 3.1 \times 10^{-10} |
deuteron-proton mass ratio | m_{\mathrm{d}} / m_{\mathrm{p}} | 1.9990075012699(84) | 1.7 \times 10^{-11} | |
deuteron molar mass N_{\mathrm{A}} m_{\mathrm{d}} | M(\mathrm{~d}), M_{\mathrm{d}} | 2.01355321466(63) \times 10^{-3} | 4.2 \times 10^{-12} | |
deuteron rms charge radius | r_{\mathrm{d}} | 2.12778(27) \times 10^{-15} | \( \mathrm{~kg} \mathrm{~mol}^{-1} | 3.1 \times 10^{-10} |
deuteron magnetic moment | \mu_{\mathrm{d}} | 4.330735087(11) \times 10^{-27} | \mathrm{~m}^{-1} | 1.3 \times 10^{-4} |
to Bohr magneton ratio | \mu_{\mathrm{d}} / \mu_{\mathrm{B}} | 4.669754568(12) \times 10^{-4} | 2.6 \times 10^{-9} | |
to nuclear magneton ratio | \mu_{\mathrm{d}} / \mu_{\mathrm{N}} | 0.8574382335(22) | 2.6 \times 10^{-9} | |
deuteron g-factor \mu_{\mathrm{d}} / \mu_{\mathrm{N}} | g_{\mathrm{d}} | 0.8574382335(22) | 2.6 \times 10^{-9} | |
deuteron-electron magnetic moment ratio | \mu_{\mathrm{d}} / \mu_{\mathrm{e}} | -4.664345550(12) \times 10^{-4} | 2.6 \times 10^{-9} | |
deuteron-proton magnetic moment ratio | \mu_{\mathrm{d}} / \mu_{\mathrm{p}} | 0.30701220930(79) | 2.6 \times 10^{-9} | |
deuteron-neutron magnetic moment ratio | \mu_{\mathrm{d}} / \mu_{\mathrm{n}} | -0.44820652(11) | 2.6 \times 10^{-9} | |
Table \PageIndex{11}: Triton, t
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
triton mass | m_{\mathrm{t}} | 5.0073567512(16) \times 10^{-27} | kg | 3.1 \times 10^{-10} |
3.01550071597(10) | u | 3.4 \times 10^{-11} | ||
energy equivalent | m_{\mathrm{t}} c^2 | 4.5003878119(14) \times 10^{-10} | J | 3.1 \times 10^{-10} |
2808.92113668(88) | MeV | 3.1 \times 10^{-10} | ||
triton-electron mass ratio | m_{\mathrm{t}} / m_{\mathrm{e}} | 5496.92153551(21) | 3.8 \times 10^{-11} | |
triton-proton mass ratio | m_{\mathrm{t}} / m_{\mathrm{p}} | 3.4 \times 10^{-11} | ||
triton molar mass N_{\mathrm{A}} m_{\mathrm{t}} | M(\mathrm{t}), M_{\mathrm{t}} | 3.01550071913(94) \times 10^{-3} | \mathrm{~kg} \mathrm{~mol}^{-1} | 3.1 \times 10^{-10} |
triton magnetic moment | \mu_{\mathrm{t}} | 1.5046095178(30) \times 10^{-26} | \mathrm{~J} \mathrm{~T}^{-1} | 2.0 \times 10^{-9} |
to Bohr magneton ratio | \mu_{\mathrm{t}} / \mu_{\mathrm{B}} | 1.6223936648(32) \times 10^{-3} | 2.0 \times 10^{-9} | |
to nuclear magneton ratio | \mu_{\mathrm{t}} / \mu_{\mathrm{N}} | 2.9789624650(59) | 2.0 \times 10^{-9} | |
triton g-factor 2 \mu_{\mathrm{t}} / \mu_{\mathrm{N}} | g_{\mathrm{t}} | 2.0 \times 10^{-9} | ||
Table \PageIndex{12}: Helion, h
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
helion mass | m_{\mathrm{h}} | 5.0064127862(16) \times 10^{-27} | kg | 3.1 \times 10^{-10} 25 \times 10^{-11} |
3.014932246932(74) | 2.5 \times 10^{-11} | |||
energy equivalent | m_{\mathrm{h}} c^2 | 4.4995394185(14) \times 10^{-10} | J | 3.1 \times 10^{-10} |
2808.39161112(88) | MeV | 3.1 \times 10^{-10} | ||
helion-electron mass ratio | m_{\mathrm{h}} / m_{\mathrm{e}} | 5495.88527984(16) | 2.9 \times 10^{-11} | |
helion-proton mass ratio | m_{\mathrm{h}} / m_{\mathrm{p}} | 2.993152671552(70) | 2.4 \times 10^{-11} | |
helion molar mass N_{\mathrm{A}} m_{\mathrm{h}} | M(\mathrm{~h}), M_{\mathrm{h}} | 3.01493225010(94) \times 10^{-3} | \mathrm{~kg} \mathrm{~mol}^{-1} | 3.1 \times 10^{-10} |
helion magnetic moment | \mu_{\mathrm{h}} | -1.07461755198(93) \times 10^{-26} | \mathrm{~J} \mathrm{~T}^{-1} | 8.7 \times 10^{-10} |
to Bohr magneton ratio | \mu_{\mathrm{h}} / \mu_{\mathrm{B}} | -1.15874098083(94) \times 10^{-3} | 8.1 \times 10^{-10} | |
to nuclear magneton ratio | \mu_{\mathrm{h}} / \mu_{\mathrm{N}} | -2.1276253498(17) | 8.1 \times 10^{-10} | |
helion g-factor 2 \mu_{\mathrm{h}} / \mu_{\mathrm{N}} | g_{\mathrm{h}} | -4.2552506995(34) | 8.1 \times 10^{-10} | |
shielded helion magnetic moment (gas, sphere, 25^{\circ} \mathrm{C} ) |
\mu_{\mathrm{h}}^{\prime} | -1.07455311035(93) \times 10^{-26} | \( \mathrm{~J} \mathrm{~T}^{-1} | 8.7 \times 10^{-10} |
to Bohr magneton ratio | \mu_{\mathrm{h}}^{\prime} / \mu_{\mathrm{B}} | -1.15867149457(94) \times 10^{-3} | 8.1 \times 10^{-10} | |
to nuclear magneton ratio | \mu_{\mathrm{h}}^{\prime} / \mu_{\mathrm{N}} | -2.1274977624(17) | 8.1 \times 10^{-10} | |
shielded helion to proton magnetic moment ratio (gas, sphere, 25^{\circ} \mathrm{C} ) shielded helion to shielded proton magnetic |
\mu_{\mathrm{h}}^{\prime} / \mu_{\mathrm{p}} | -0.76176657721(66) | 8.6 \times 10^{-10} | |
moment ratio (gas / \mathrm{H}_2 \mathrm{O}, spheres, 25^{\circ} \mathrm{C} ) | \mu_{\mathrm{h}}^{\prime} / \mu_{\mathrm{p}}^{\prime} | -0.761 7861334(31) | 4.0 \times 10^{-9} | |
shielded helion gyromagnetic ratio | ||||
2\left|\mu_{\mathrm{h}}^{\prime}\right| / \hbar \text { (gas, sphere, } 25^{\circ} \mathrm{C} \text { ) } | \gamma_{\mathrm{h}}^{\prime} | 2.0378946078(18) \times 10^8 | \mathrm{s}^{-1} \mathrm{~T}^{-1} | 8.7 \times 10^{-10} |
32.434100033(28) | \mathrm{MHz} \mathrm{T}^{-1} | 8.7 \times 10^{-10} |
Table \PageIndex{13}: Alpha particle, \alpha
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
alpha particle mass | m_\alpha | 6.6446573450(21) \times 10^{-27} | kg | 3.1 \times 10^{-10} |
energy equivalent | 4.001506179129(62) | u | 1.6 \times 10^{-11} | |
m_\alpha c^2 | 5.9719201997(19) \times 10^{-10} | J | 3.1 \times 10^{-10} | |
alpha particle to electron mass ratio | 3727.3794118(12) | MeV | 3.1 \times 10^{-10} | |
alpha particle to proton mass ratio | m_\alpha / m_{\mathrm{e}} | 7294.29954171(17) | 2.4 \times 10^{-11} | |
alpha particle rms charge radius | m_\alpha / m_{\mathrm{p}} | 3.972599690252(70)\) | 1.8 \times 10^{-11} | |
alpha particle molar mass N_{\mathrm{A}} m_\alpha | r_\alpha | 1.6785(21) \times 10^{-15} | m | 1.2 \times 10^{-3} |
M(\alpha), M_\alpha | 4.0015061833(12) \times 10^{-3} | \(\mathrm{~kg} \mathrm{~mol}^{-1} | 3.1 \times 10^{-10} | |
Table \PageIndex{14}: Physicochemical Constants
Quantity | Symbol | Value | Unit | Relative std. uncert. u_{\mathrm{r}} |
---|---|---|---|---|
Avogadro constant |
N_{\mathrm{A}} | 6.02214076 \times 10^{23} | \mathrm{~mol}^{-1} | exact |
Boltzmann constant | k | 1.380649 \times 10^{-23} | \mathrm{~J} \mathrm{~K}^{-1} | exact |
8.617333262 \ldots \times 10^{-5} | \mathrm{eV} \mathrm{K}^{-1} | exact | ||
k / h | 2.083661912 \ldots \times 10^{10} | \mathrm{~Hz} \mathrm{~K}^{-1} | exact | |
k / h c | 69.50348004 \ldots | \left[\mathrm{m}^{-1} \mathrm{~K}^{-1}\right]^{\dagger} | exact | |
atomic mass constant | ||||
m_{\mathrm{u}}=\frac{1}{12} m\left({ }^{12} \mathrm{C}\right)=2 h c R_{\infty} / \alpha^2 c^2 A_{\mathrm{r}}(\mathrm{e}) | m_{\mathrm{u}} | 1.66053906892(52) \times 10^{-27}\) | kg | 3.1 \times 10^{-10} |
equivalent energy | m_{\mathrm{u}} c^2 | \) 1.49241808768(46) \times 10^{-10} | J | 3.1 \times 10^{-10} |
931.49410372(29) | MeV | 3.1 \times 10^{-10} | ||
molar mass constant { }^{\|} | M_{\mathrm{u}} | 1.00000000105(31) \times 10^{-3} | \mathrm{~kg} \mathrm{~mol}^{-1} | 3.1 \times 10^{-10} |
molar mass" of carbon-12 A_{\mathrm{r}}\left({ }^{12} \mathrm{C}\right) M_{\mathrm{u}} | M\left({ }^{12} \mathrm{C}\right) | 12.0000000126(37) \times 10^{-3} | \mathrm{~kg} \mathrm{~mol}^{-1} | 3.1 \times 10^{-10} |
molar Planck constant | N_{\mathrm{A}} h | 3.990312712 \ldots \times 10^{-10} | \mathrm{~J} \mathrm{~Hz}^{-1} \mathrm{~mol}^{-1} | exact |
molar gas constant N_{\mathrm{A}} k | R | 8.314462618 \ldots | \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1} | exact |
Faraday constant N_{\mathrm{A}} e | F | 96485.33212 \ldots | \mathrm{C} \mathrm{mol}^{-1} | exact |
standard-state pressure | 100000 | Pa | exact | |
standard atmosphere | 101325 | Pa | exact | |
molar volume of ideal gas R T / p | ||||
T=273.15 \mathrm{~K}, p=100 \mathrm{kPa} or standard-state pressure |
V_{\mathrm{m}} | 22.71095464 \ldots \times 10^{-3} | \mathrm{~m}^3 \mathrm{~mol}^{-1} | exact |
Loschmidt constant N_{\mathrm{A}} / V_{\mathrm{m}} molar volume of ideal gas R T / p |
n_0 | 2.651645804 \ldots \times 10^{25} | \mathrm{~m}^{-3} | exact |
T=273.15 \mathrm{~K}, p=101.325 \mathrm{kPa} or standard atmosphere |
V_{\mathrm{m}} | 22.41396954 \ldots \times 10^{-3} | \mathrm{~m}^3 \mathrm{~mol}^{-1} | exact |
Loschmidt constant N_{\mathrm{A}} / V_{\mathrm{m}} | n_0 | 2.686780111 \ldots \times 10^{25} | \mathrm{~m}^{-3} | exact |
Sackur-Tetrode (absolute entropy) constant** | ||||
\frac{5}{2}+\ln \left[\left(m_{\mathrm{u}} k T_1 / 2 \pi \hbar^2\right)^{3 / 2} k T_1 / p_0\right] T_1=1 \mathrm{~K}, p_0=100 \mathrm{kPa} |
S_0 / R | -1.15170753496(47) | 4.1 \times 10^{-10} | |
T_1=1 \mathrm{~K}, p_0=101.325 \mathrm{kPa} or standard atmosphere |
-1.16487052149(47) | 4.0 \times 10^{-10} | ||
Stefan-Boltzmann constant \left(\pi^2 / 60\right) k^4 / \hbar^3 c^2 |
\sigma | 5.670374419 \ldots \times 10^{-8} | \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} | exact |
first radiation constant for spectral | ||||
radiance 2 h c^2 \mathrm{sr}^{-1} | c_{1 \mathrm{~L}} | 1.191042972 \ldots \times 10^{-16} | \left[\mathrm{~W} \mathrm{~m}^2 \mathrm{sr}^{-1}\right]^{\dagger} | exact |
first radiation constant 2 \pi h c^2=\pi \mathrm{sr} c_{1 \mathrm{~L}} | c_1 | 3.741771852 \ldots \times 10^{-16} | \left[\mathrm{~W} \mathrm{~m}^2\right]^{\dagger} | exact |
second radiation constant h c / k | c_2 | 1.438776877 \ldots \times 10^{-2} | [\mathrm{~m} \mathrm{~K}]^{\dagger} | exact |
Wien displacement law constants | ||||
b=\lambda_{\max } T=c_2 / 4.965114231 \ldots | b | 2.897771955 \ldots \times 10^{-3} | [\mathrm{~m} \mathrm{~K}]^{\dagger} | exact |
b^{\prime}=\nu_{\max } / T=2.821439372 \ldots c / c_2 | b^{\prime} | 5.878925757 \ldots \times 10^{10} | Hz K | exact |
* The energy of a photon with frequency \nu expressed in unit Hz is E=h \nu in J . Unitary time evolution of the state of this photon is given by \exp (-i E t / \hbar)|\varphi\rangle, where |\varphi\rangle is the photon state at time t=0 and time is expressed in unit s. The ratio E t / \hbar is a phase.
{ }^{\dagger} The symbol [\mathrm{m}] denotes \mathrm{m} /(\mathrm{Hz} \mathrm{s}). If angles are dimensionless, as in the current SI , then \mathrm{Hz} \mathrm{s}=1. If angles have a dimension, then \mathrm{Hz} \mathrm{s}= cycle.
‡ Value recommended by the Particle Data Group (Workman, et al., 2022).
{ }^8 Based on the ratio of the masses of the W and Z bosons m_{\mathrm{W}} / m_{\mathrm{Z}} recommended by the Particle Data Group (Workman, et al., 2022). The value for \sin ^2 \theta_{\mathrm{W}} they recommend, which is based on a variant of the modified minimal subtraction (\overline{\mathrm{MS}}) scheme, is \sin ^2 \hat{\theta}_{\mathrm{W}}\left(M_{\mathrm{Z}}\right)=0.23122(4).
{ }^{\text {II }} This and other constants involving m_\tau are based on m_\tau c^2 in MeV recommended by the Particle Data Group (Workman, et al., 2022). atomic mass constant and u is the unified atomic mass unit. Moreover, the mass of particle X is m(X)=A_{\mathrm{r}}(X) \mathrm{u} and the molar mass of X is \
(M(X)=A_{\mathrm{r}}(X) M_{\mathrm{u}}\), where M_{\mathrm{u}}=N_{\mathrm{A}} \mathrm{u} is the molar mass constant and N_{\mathrm{A}} is the Avogadro constant.
{ }^{* *} The entropy of an ideal monoatomic gas of relative atomic mass A_{\mathrm{r}} is given by S=S_0+\frac{3}{2} R \ln A_{\mathrm{r}}-R \ln \left(p / p_0\right)+\frac{5}{2} R \ln (T / \mathrm{K}).