Skip to main content
Physics LibreTexts

Module 1 - Summary

  • Page ID
    105478
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Summary Notes Module 1

    Postulates of Ray Optics

    • #1. Light travels in the form of rays
    • #2. An optical medium is characterized by a refractive index, \( n \geq 1 \). The refractive index provides a measure of the speed of the light in that medium (\( v \)): \( n = \frac{c}{v} \) where \( c = 3 \times 10^8 \, \text{m/s} \).
    • #3. The optical path length is the optical distance between two points: \[ \text{OPL} = \int_A^B n(x, y, z) \, ds, \] where \( ds \) is the differential distance between both points. If the medium is homogeneous, \( n(x, y, z) = \text{constant} \), the optical path length is equal to \( \text{OPL} = n \Delta \), where \( \Delta \) is the distance between points \( A \) and \( B \).
    • #4. Fermat’s Principle: light traveling between two points follows a path in which the derivative of the OPL is zero. Therefore, the OPL is at a maximum, minimum, or a point of inflection.

    Rules of propagation

    • #1. In a homogeneous medium (i.e., \( n(x, y, z) = \text{constant} \)), the path of minimum distance between two points is a straight line. In other words, light travels in straight lines.
    • #2. Law of reflection: the angle of reflection is the same as the angle of incidence.
    • #3. The angle of refraction depends on the angle of incidence by Snell’s law: \[ n_1 \sin \theta_1 = n_2 \sin \theta_2. \]

    clipboard_e1d7d963cb9b9ca8fe659841f8eb44855.png

    Mirrors

    • Planar mirror
    • Paraboloidal mirror (i.e., focusing mirror) – all parallel rays to its optical axis are focused in the same point \( F \) (i.e., there is a focal spot). The distance defined by \( F \) and the mirror’s vertex \( P \) is the focal length.
    • Elliptical mirror (i.e., image mirror) – all rays emitted from one focus are imaged onto the other focus. The distance traveled by the light between both focal spots is always the same regardless of the path. The elliptical mirror is defined by 2 focal spots.
    • Spherical mirror – parallel rays are reflected to its optical axis at different positions. However, rays traveling close to its axis are approximately focused onto the same point \( F \), with the distance equal to half the distance to its center. In other words, the focal length \( f = - \frac{R}{2} \), where \( R \) is the radius of curvature. Note that convex mirrors have negative focal length \( f = - \frac{R}{2} \), and concave mirrors have positive focal length, \( f = \frac{R}{2} \).

    Convex Mirror

    clipboard_eb52ce848d9915e30c7f26ee16f16b4e6.png

    Concave Mirror

    clipboard_edc5cb9d672622d6e1324317e51979bbf.png

    Note the following sign convention: \( d_0, d_i < 0 \) means points to the right side of the mirror (i.e., virtual) and \( d_0, d_i > 0 \) are related to points to the left side of the mirror (i.e., real).

    Ray Tracing in Mirrors

    Convex Mirror

    clipboard_e64902552ad5dda8278350511bdec154f.png

    Concave Mirror

    clipboard_ecf7c8a1a5ecaecdb7e6642512b21f941.png

    Planar Boundaries – a planar interface that separates two media of constant refractive index.

    clipboard_ed5ae4fc672905dc86fad350235dd04f5.png

    \[ n_1 \sin \theta_1 = n_2 \sin \theta_2 \] \[ n_1 \theta_1 \approx n_2 \theta_2 \quad \text{if} \quad \theta_1, \theta_2 \ll 1. \]

    • #1. \( n_1 > n_2 \) then \( \theta_1 < \theta_2 \) – refracted rays away from the boundary.
    • #2. \( n_1 < n_2 \) then \( \theta_1 > \theta_2 \) – refracted rays towards the boundary.
    • #3. \( n_1 < n_2 \) and \( \theta_2 = 90^\circ \) – Phenomenon of Total Internal Reflection. \[ n_1 \sin \theta_1 = n_2 \sin \theta_2 = n_2 \sin(90^\circ) = n_2 \quad \Rightarrow \quad \sin \theta_1 = \frac{n_2}{n_1} \quad \Rightarrow \quad \theta_{1,c} = \sin^{-1} \left( \frac{n_2}{n_1} \right). \]

    If the incidence angle is higher than the critical angle \( \theta_1 > \theta_{1,c} \), Snell’s law cannot be satisfied (i.e., \( \sin \theta_2 > 1 \)), so refraction does not occur and the incident ray is reflected (no refraction!). The phenomenon of total internal refraction occurs in fiber optics.

    Lenses – two spherical surfaces of radii \( R_1 \) and \( R_2 \)

    • Lens’ maker equation: \[ \frac{1}{f} = \frac{n - n_s}{n_s} \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \] where \( f \) is the lens’ focal length, \( n \) is the lens’ refractive index, \( n_s \) is the refractive index of the surrounding media, and \( R_1 \) and \( R_2 \) are the radii of curvature of the first and second surfaces, respectively.
      • \( f > 0 \) is a converging lens and \( f < 0 \) is a diverging lens.
    • Type of lenses (TIP: the name is associated with the outside shape):
      • Biconvex: \( R_1 > 0 \) and \( R_2 < 0 \)
      • Biconcave: \( R_1 < 0 \) and \( R_2 > 0 \)
      • Plano-convex: \( R_1 > 0 \) and \( R_2 = \infty \)
      • Plano-concave: \( R_1 = \infty \) and \( R_2 > 0 \)
    • Imaging equations: \[ \frac{1}{d_0} + \frac{1}{d_i} = \frac{1}{f}, \quad y_i = - \frac{d_i}{d_0} y_0 \]
    • Ray tracing

    Converging Lens

    clipboard_e557bf2e785479d9d5c1fbabfdcabd779.png

    Diverging Lens

    clipboard_edb92ee8c0799ccbb04cadc4661522772.png

    Matrix Optics

    Input \( \begin{bmatrix} A & B \\ C & D \end{bmatrix} \) Output

    \[ \begin{pmatrix} y_2 \\ \theta_2 \end{pmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{pmatrix} y_1 \\ \theta_1 \end{pmatrix} \]

    \[ y_2 = A y_1 + B \theta_1, \quad \theta_2 = C y_1 + D \theta_1. \]

    Matrix Element Value Output Height or Angle Consequence of the resultant system
    \( A = 0\) \( y_2 = B \theta_1 \) Focusing system
    \( B = 0\) \( y_2 = A y_1 \) Imaging system where \(A\) is the lateral magnification
    \( C = 0\) \( \theta_2 = D \theta_1 \) Parallel rays remain parallel
    \( D = 0\) \(\theta_2 = C y_1 \) Rays emerging from a point source are parallel after the system

    Examples of ABCD Matrices

    • Free propagation of a distance \( d \): \( \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \)
    • Lens of focal length \( f \): \( \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} \) where \( f > 0 \) for converging lenses and \( f < 0 \) for diverging lenses.

    Cascade of Matrices – an optical system composed of \( N \) matrices:

    Input \( \begin{bmatrix} M_1 & M_2 & \dots & M_N \end{bmatrix}\) Output

    \[ \begin{pmatrix} y_2 \\ \theta_2 \end{pmatrix} = \begin{bmatrix} M_T \end{bmatrix} \begin{pmatrix} y_1 \\ \theta_1 \end{pmatrix} \]

    where \( M_T = M_N M_{N-1} \dots M_2 M_1 \).


    Module 1 - Summary is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?