Skip to main content
Physics LibreTexts

Module 5 - Summary

  • Page ID
    105494
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Summary Notes Module 5

    • In Electromagnetic Optics, light is described as a vector.

    • An electromagnetic field is described by 2 vector fields that are dependent on space, \( \mathbf{r} = (x, y, z) \), and time, \( t \).

    • Electric field: \( \mathbf{E}(\mathbf{r}, t) = (E_x, E_y, E_z) \)
    • Magnetic field: \( \mathbf{H}(\mathbf{r}, t) = (H_x, H_y, H_z) \)

    • Maxwell’s equation in free-space (\( n = 1 \)):

    • \( \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} = \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \), where \( \epsilon_0 = \frac{1}{36 \pi} \times 10^{-9} \, \text{F/m} \) is the electric permittivity.
    • \( \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t} \), where \( \mu_0 = 4 \pi \times 10^7 \, \text{H/m} \) is the magnetic permeability.
    • \( \nabla \cdot \mathbf{E} = 0 \)
    • \( \nabla \cdot \mathbf{H} = 0 \)

    Each component of \( \mathbf{E}(\mathbf{r}, t) \) and \( \mathbf{H}(\mathbf{r}, t) \) should satisfy the wave equation (i.e., Module 2). For example, considering \( E_y \), then:

    \( \nabla^2 E_y(\mathbf{r}, t) - \frac{1}{v^2} \frac{\partial^2 E_y(\mathbf{r}, t)}{\partial t^2} = 0 \)

    where \( v = \frac{c}{n} \) and \( \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \) is the Laplacian operator in Cartesian coordinates.

    • In a medium with no free electric and magnetic charges, there are 4 vectors:

    • Electric field: \( \mathbf{E}(\mathbf{r}, t) = (E_x, E_y, E_z) \)
    • Electric displacement field: \( \mathbf{D}(\mathbf{r}, t) = (D_x, D_y, D_z) \)
    • Magnetic field: \( \mathbf{H}(\mathbf{r}, t) = (H_x, H_y, H_z) \)
    • Magnetic flux density field: \( \mathbf{B}(\mathbf{r}, t) = (B_x, B_y, B_z) \)

    where \( \mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \) and \( \mathbf{B} = \mu_0 \mathbf{H} + \mathbf{M} \). Note that \( \mathbf{P} = \mathbf{M} = 0 \) in free space. Both \( \mathbf{P} \) (i.e., polarization density field) and \( \mathbf{M} \) (i.e., magnetization density field) are dependent on the medium.

    • Maxwell’s equation in a medium (\( n > 1 \)):

    • \( \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} \)
    • \( \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \)
    • \( \nabla \cdot \mathbf{D} = 0 \)
    • \( \nabla \cdot \mathbf{B} = 0 \)

    • The Poynting vector, \( \mathbf{S} = \mathbf{E} \times \mathbf{H} \), represents the flow of electromagnetic power. The Poynting vector is perpendicular to \( \mathbf{E} \) and \( \mathbf{H} \). For example, if \( \mathbf{E}(\mathbf{r}, t) = (E_x, 0, 0) \) and \( \mathbf{H}(\mathbf{r}, t) = (0, H_y, 0) \), then the Poynting vector only has a unique component, \( \mathbf{S} = \mathbf{E} \times \mathbf{H} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ E_x & 0 & 0 \\ 0 & H_y & 1 \end{vmatrix} = \hat{z} E_x H_y = (0, 0, E_x H_y) \), so \( S_z = E_x H_y \).

    • Medium so \( \mathbf{E} \) and \( \mathbf{P} \) are related each other, and \( \mathbf{H} \) and \( \mathbf{M} \) are related each other.

    Cases:

    • \( \mathbf{E} \) and \( \mathbf{P} \) are linearly related → medium is dielectric
    • \( \mathbf{E} \) and \( \mathbf{P} \) are invariant to space → homogeneous medium
    • \( \mathbf{E} \) and \( \mathbf{P} \) are parallel → isotropic medium
    • \( \mathbf{E}(t_1) \) determines \( \mathbf{P}(t_1) \) → nondispersive medium
    • \( \mathbf{E}(\mathbf{r}_1) \) determines \( \mathbf{P}(\mathbf{r}_1) \) → spatially nondispersive medium

    If a medium is linear, nondispersive, homogeneous, and isotropic, then \( \mathbf{P} = \epsilon_0 \chi \mathbf{E} \) and \( \mathbf{D} = \epsilon \mathbf{E} \), where \( \chi \) is the medium's electric susceptibility, and \( \epsilon = \epsilon_0(1 + \chi) \) is the medium’s electric permittivity. Similarly, \( \mathbf{M} = \mu_0 \chi_m \mathbf{H} \) and \( \mathbf{B} = \mu \mathbf{H} \), where \( \chi_m \) is the medium’s magnetic susceptibility, and \( \mu = \mu_0(1 + \chi_m) \) is the medium’s magnetic permeability.

    • Simplification of Maxwell’s equations:

    • \( \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} = \epsilon \frac{\partial \mathbf{E}}{\partial t} \)
    • \( \nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t} = - \mu \frac{\partial \mathbf{H}}{\partial t} \)
    • \( \nabla \cdot \mathbf{E} = 0 \)
    • \( \nabla \cdot \mathbf{H} = 0 \)

    where \( v = \frac{1}{\sqrt{\epsilon \mu}} \), \( c = \frac{1}{\sqrt{\epsilon_0 \mu_0}} \), and \( n = \sqrt{1 + \chi} \) (i.e., \( \mu = \mu_0 \), medium without magnetic properties).

    If \( n = \sqrt{1 + \chi} \), then \( \chi = n^2 - 1 \), the electric susceptibility can be estimated from the medium’s refractive index. In general, if the medium has electric and magnetic properties, \( n = \sqrt{(1 + \chi)(1 + \chi_m)} \)

    • Monochromatic electromagnetic waves:

    • \( \mathbf{E}(\mathbf{r}, t) = \text{Re}[\mathbf{E}(\mathbf{r}) e^{j \omega t}] \)
    • \( \mathbf{D}(\mathbf{r}, t) = \text{Re}[\mathbf{D}(\mathbf{r}) e^{j \omega t}] \)
    • \( \mathbf{H}(\mathbf{r}, t) = \text{Re}[\mathbf{H}(\mathbf{r}) e^{j \omega t}] \)
    • \( \mathbf{B}(\mathbf{r}, t) = \text{Re}[\mathbf{B}(\mathbf{r}) e^{j \omega t}] \)

    The Maxwell's equations for monochromatic electromagnetic waves:

    • \( \nabla \times \mathbf{H} = j \omega \mathbf{D} \)
    • \( \nabla \times \mathbf{E} = - j \omega \mathbf{B} \)
    • \( \nabla \cdot \mathbf{D} = 0 \)
    • \( \nabla \cdot \mathbf{B} = 0 \)

    • Absorption – decrease of light intensity through propagation:

    • Beer’s law: \( I(x) = I_0 e^{-\alpha x} \), where \( I(x) \) is the transmitted intensity after the light travels a distance \( x \), \( I_0 \) is the incident light intensity, and \( \alpha \) is the linear attenuation coefficient (units: m\(^{-1}\)). We can define the penetration depth as the inverse of the attenuation coefficient: \( \delta = \frac{1}{\alpha} \), which is the distance in which the intensity of the transmitted light is reduced by a factor of \( 1/e \).
    • Transmittance: \( T = \frac{I(x)}{I_0} = e^{-\alpha x} \) and Absorptance: \( A = \log_{10}(T) = 0.4343 \alpha x \)

    • The complex refractive index when the susceptibility is complex (\( \chi = \chi' + j \chi'' \)): \( n - j \frac{\alpha}{2k_0} = \sqrt{1 + \chi' + j \chi''} \), where \( k_0 = \frac{2\pi}{\lambda_0} \) is the free-space wavenumber.

    • Dispersion occurs when the refractive index changes with the light’s wavelength:

    • Abbe number
    • Cauchy’s equation
    • Sellmeier’s equation

    Module 5 - Summary is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?