Multi-choice questions
- Page ID
- 105495
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Multi-choice Quiz Module 5
1. Knowing that the Poynting vector is given by \(\textbf{S} = \textbf{E} \times \textbf{H},\) which is the value for an electric field E and a magnetic field H?
a. S = (0, 0, Sz)
b. S = (Sx, 0, Sz)
c. S = (Sx, Sy, Sz)
d. S = (Sx, Sy, 0)
2. Consider that the electric and magnetic fields E = (1, 2, 3) and H = (3, 2, 1), respectively. Select the correct Poynting vector knowing that \(\textbf{S} = \textbf{E} \times \textbf{H}.\)
a. S = (3, 2, 3)
b. S = (− 4, 8, −4)
c. S = (− 3, 2, −3)
3. Consider that the medium is isotropic and the electric field is given by . Which of the following is a truthful representation of the polarization vector?
a. \(\textbf{P} = \left( 0, 0, P_{z} \right )\)
b. \(\textbf{P} = \left( P_{x}, 0, P_{z} \right )\)
c. \(\textbf{P} = \left( P_{x}, P_{y}, P_{z} \right )\)
d. \(\textbf{P} = \left( P_{x}, P_{y}, 0 \right )\)
e. \(\textbf{P} = \left( P_{x}, 0, 0 \right ) \)
4. Consider that a medium is linear, nondispersive, homogeneous, and isotropic. Which one of the following sentences false?
a. The higher the value of the electric susceptibility, the higher the refractive index of the medium.
b. The refractive index does not depend on the electric and magnetic properties of the medium.
c. The electric and magnetic flux densities are related to the electric and magnetic fields, respectively.
5. What is the electric susceptibility of the water (n=1.33)? Consider that the water only has electric properties, and it can be considered a linear, nondispersive, homogeneous and isotropic medium.
a. We do not have enough information to estimate the electric susceptibility
b. The electric susceptibility is \(\chi = 0.7689 \)
c. The electric susceptibility is \( \chi = 0.33\)
6. A certain medium has an absorption coefficient of α = 0.05 m-1. What is its penetration depth?
a. Penetration depth is δ = 20 m
b. We need to know the incident intensity to provide this calculation
c. Penetration depth is δ = 3 m
7. Select the statement that is false to the Beer’s law:
a. The lower the attenuation coefficient, the slower the penetration depth
b. In a no-amplification medium, there is always a reduction of the light intensity through the propagation.
c. Through propagation, the medium can only decrease the intensity via absorption or scattering.
8. Consider that Cauchy's equation gives the dispersion of a material with only two parameters: \(n = A + \frac{B}{\lambda^{2}} \). How many resonances does the material have?
a. Two resonance wavelengths
b. A single resonance wavelength.
c. The resonance wavelengths are defined in Sellmeier’s equation, so we cannot know them without enough information.
9. Select the statement that is true concerning dispersion:
a. The Abbe number can be estimated by knowing the refractive index of the material at any arbitrary wavelength.
b. The Cauchy’s equation is a good approximation for materials that present normal dispersion in the visible regime.
c. The resonance wavelength is the wavelength in which the absorption curve is minimum.
10. True/False. The refractive index decreases with the increase of the wavelength in anomalous dispersion.
a. True
b. False
11. After overpassing a solution with an optical path length of x = 0.05 m, the intensity of light is reduced to half. The solution presents both absorption and scattering phenomena. If the linear attenuation absorption coefficient is αA = 0.025 cm-1. What is the value of the linear attenuation scattering coefficient αS?
a. αS = 0.025 cm-1.
b. αS = 1.412 cm-1.
c. αS = 0.11 cm-1.
d. αS = 2.361 cm-1.
12. In which of these situations can the Cauchy equation be used?
a. Near resonant frequency
b. Within visible spectrum
c. In materials with anomalous dispersion
13. You want to get some tinted glass for your car that can reduce the incident sunlight to 10% of its original intensity over the 2-mm thickness of the window. What linear attenuation coefficient should you be shopping for?
a. 0.247 m-1
b. 52.6 m-1
c. 386 m-1
d. 1150 m-1