# The Del-operator

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## The $$\nabla$$-operator

In cartesian coordinates $$(x,y,z)$$ : $\vec{\nabla}=\frac{\partial }{\partial x}\vec{e}_{x}+\frac{\partial }{\partial y}\vec{e}_{y}+\frac{\partial }{\partial z}\vec{e}_{z}~~,~~ {\rm grad}f=\vec{\nabla}f=\frac{\partial f}{\partial x}\vec{e}_{x}+\frac{\partial f}{\partial y}\vec{e}_{y}+\frac{\partial f}{\partial z}\vec{e}_{z}$ ${\rm div}~\vec{a}=\vec{\nabla}\cdot\vec{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}~~,~~ \nabla^2 f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2}$ ${\rm rot}~\vec{a}=\vec{\nabla}\times\vec{a}= \left(\frac{\partial a_z}{\partial y}-\frac{\partial a_y}{\partial z}\right)\vec{e}_{x}+ \left(\frac{\partial a_x}{\partial z}-\frac{\partial a_z}{\partial x}\right)\vec{e}_{y}+ \left(\frac{\partial a_y}{\partial x}-\frac{\partial a_x}{\partial y}\right)\vec{e}_{z}$ In cylinder coordinates $$(r,\varphi,z)$$ holds: $\vec{\nabla}=\frac{\partial }{\partial r}\vec{e}_{r}+\frac{1}{r}\frac{\partial }{\partial \varphi}\vec{e}_{\varphi}+\frac{\partial }{\partial z}\vec{e}_{z}~~,~~ {\rm grad}f=\frac{\partial f}{\partial r}\vec{e}_{r}+\frac{1}{r}\frac{\partial f}{\partial \varphi}\vec{e}_{\varphi}+\frac{\partial f}{\partial z}\vec{e}_{z}$ ${\rm div}~\vec{a}=\frac{\partial a_r}{\partial r}+\frac{a_r}{r}+\frac{1}{r}\frac{\partial a_\varphi}{\partial \varphi}+\frac{\partial a_z}{\partial z}~~,~~ \nabla^2 f=\frac{\partial^2 f}{\partial r^2}+\frac{1}{r}\frac{\partial f}{\partial r}+\frac{1}{r^2}\frac{\partial^2 f}{\partial \varphi^2}+\frac{\partial^2 f}{\partial z^2}$ ${\rm rot}~\vec{a}=\left(\frac{1}{r}\frac{\partial a_z}{\partial \varphi}-\frac{\partial a_\varphi}{\partial z}\right)\vec{e}_{r}+ \left(\frac{\partial a_r}{\partial z}-\frac{\partial a_z}{\partial r}\right)\vec{e}_{\varphi}+ \left(\frac{\partial a_\varphi}{\partial r}+\frac{a_\varphi}{r}-\frac{1}{r}\frac{\partial a_r}{\partial \varphi}\right)\vec{e}_{z}\\$

In spherical coordinates $$(r,\theta,\varphi)$$: \begin{aligned} \vec{\nabla} &=&\frac{\partial }{\partial r}\vec{e}_{r}+\frac{1}{r}\frac{\partial }{\partial \theta}\vec{e}_{\theta}+\frac{1}{r\sin\theta}\frac{\partial }{\partial \varphi}\vec{e}_{\varphi}\\ {\rm grad}f &=&\frac{\partial f}{\partial r}\vec{e}_{r}+\frac{1}{r}\frac{\partial f}{\partial \theta}\vec{e}_{\theta}+\frac{1}{r\sin\theta}\frac{\partial f}{\partial \varphi}\vec{e}_{\varphi}\\ {\rm div}~\vec{a}&=&\frac{\partial a_r}{\partial r}+\frac{2a_r}{r}+\frac{1}{r}\frac{\partial a_\theta}{\partial \theta}+\frac{a_\theta}{r\tan\theta}+\frac{1}{r\sin\theta}\frac{\partial a_\varphi}{\partial \varphi}\\ {\rm rot}~\vec{a}&=&\left(\frac{1}{r}\frac{\partial a_\varphi}{\partial \theta}+\frac{a_\theta}{r\tan\theta}-\frac{1}{r\sin\theta}\frac{\partial a_\theta}{\partial \varphi}\right)\vec{e}_{r}+ \left(\frac{1}{r\sin\theta}\frac{\partial a_r}{\partial \varphi}-\frac{\partial a_\varphi}{\partial r}-\frac{a_\varphi}{r}\right)\vec{e}_{\theta}+\\ &&\left(\frac{\partial a_\theta}{\partial r}+\frac{a_\theta}{r}-\frac{1}{r}\frac{\partial a_r}{\partial \theta}\right)\vec{e}_{\varphi}\\ \nabla^2 f &=&\frac{\partial^2 f}{\partial r^2}+\frac{2}{r}\frac{\partial f}{\partial r}+\frac{1}{r^2}\frac{\partial^2 f}{\partial \theta^2}+\frac{1}{r^2\tan\theta}\frac{\partial f}{\partial \theta}+\frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \varphi^2}\end{aligned}

General orthonormal curvelinear coordinates $$(u,v,w)$$ can be obtained from cartesian coordinates by the transformation $$\vec{x}=\vec{x}(u,v,w)$$. The unit vectors are then given by: $\vec{e}_{u}=\frac{1}{h_1}\frac{\partial \vec{x}}{\partial u}~,~~\vec{e}_{v}=\frac{1}{h_2}\frac{\partial \vec{x}}{\partial v}~,~~ \vec{e}_{w}=\frac{1}{h_3}\frac{\partial \vec{x}}{\partial w}$ where the factors $$h_i$$ set the norm to 1. Then holds: \begin{aligned} {\rm grad}f &=&\frac{1}{h_1}\frac{\partial f}{\partial u}\vec{e}_{u}+\frac{1}{h_2}\frac{\partial f}{\partial v}\vec{e}_{v}+\frac{1}{h_3}\frac{\partial f}{\partial w}\vec{e}_{w}\\ {\rm div}~\vec{a}&=&\frac{1}{h_1h_2h_3}\left(\frac{\partial }{\partial u}(h_2h_3a_u)+\frac{\partial }{\partial v}(h_3h_1a_v)+\frac{\partial }{\partial w}(h_1h_2a_w)\right)\\ {\rm rot}~\vec{a}&=&\frac{1}{h_2h_3}\left(\frac{\partial (h_3a_w)}{\partial v}-\frac{\partial (h_2a_v)}{\partial w}\right)\vec{e}_{u}+ \frac{1}{h_3h_1}\left(\frac{\partial (h_1a_u)}{\partial w}-\frac{\partial (h_3a_w)}{\partial u}\right)\vec{e}_{v}+\\ &&\frac{1}{h_1h_2}\left(\frac{\partial (h_2a_v)}{\partial u}-\frac{\partial (h_1a_u)}{\partial v}\right)\vec{e}_{w}\\ \nabla^2 f &=&\frac{1}{h_1h_2h_3}\left[\frac{\partial }{\partial u}\left(\frac{h_2h_3}{h_1}\frac{\partial f}{\partial u}\right)+ \frac{\partial }{\partial v}\left(\frac{h_3h_1}{h_2}\frac{\partial f}{\partial v}\right)+ \frac{\partial }{\partial w}\left(\frac{h_1h_2}{h_3}\frac{\partial f}{\partial w}\right)\right]\end{aligned}

This page titled The Del-operator is shared under a CC BY license and was authored, remixed, and/or curated by Johan Wevers.