Appendix E: Mathematical Formulas
( \newcommand{\kernel}{\mathrm{null}\,}\)
Quadratic formula
If ax2 + bx + c = 0, then x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}
Table E1 - Geometry
Triangle of base b and height h | Area = \frac{1}{2}bh | |
Circle of radius r | Circumference = 2\pir | Area = \pir2 |
Sphere of radius r | Surface Area = 2\pir2 | Volume = \frac{4}{3} \pir3 |
Cylinder of radius r and height h | Area of curved surface = 2\pirh | Volume = \pir2h |
Trigonometry
Trigonometric Identities
- sin \theta = \frac{1}{\csc \theta}
- cos \theta = \frac{1}{\sec \theta}
- tan \theta = \frac{1}{\cot \theta}
- sin(90° − \theta) = cos \theta
- cos(90° − \theta) = sin \theta
- tan(90° − \theta) = cot \theta
- sin2 \theta + cos2 \theta = 1
- sec2 \theta − tan2 \theta = 1
- tan \theta = \frac{\sin \theta}{\cos \theta}
- sin(\alpha \pm \beta) = sin \alpha cos \beta ± cos \alpha sin \beta
- cos(\alpha \pm \beta) = cos \alpha cos \beta ∓ sin \alpha sin \beta
- tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}
- sin 2\theta = 2sin \thetacos \theta
- cos 2\theta = cos2 \theta − sin2 \theta = 2 cos2 \theta − 1 = 1 − 2 sin2 \theta
- sin \alpha + sin \beta = 2 sin\frac{1}{2}(\alpha + \beta)cos\frac{1}{2}(\alpha − \beta)
- cos \alpha + cos \beta = 2 cos\frac{1}{2}(\alpha + \beta)cos\frac{1}{2}(\alpha − \beta)
Triangles
- Law of sines: \frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}
- Law of cosines: c2 = a2 + b2 − 2ab cos \gamma
- Pythagorean theorem: a2 + b2 = c2
Series expansions
- Binomial theorem: (a + b)n = an + nan-1b + \frac{n(n-1)a^{n-2} b^{2}}{2!} + \frac{n(n-1)(n-2)a^{n-3} b^{3}}{3!} + \cdots
- (1 ± x)n = 1 ± \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} \pm \cdots (x2 < 1)
- (1 ± x)-n = 1 ∓ \frac{nx}{1!} + \frac{n(n+1)x^{2}}{2!} \mp \cdots (x2 < 1)
- sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \cdots
- cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots
- tan x = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \cdots
- ex = 1 + x + \frac{x^{2}}{2!} + \cdots
- ln(1 + x) = x − \frac{1}{2}x^{2} + \frac{1}{3}x^{3} − \cdots (|x| < 1)
Derivatives
- \frac{d}{dx}[a f(x)] = a \frac{d}{dx}f(x)
- \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)
- \frac{d}{dx}[f(x)g(x)] = f(x) \frac{d}{dx}g(x) + g(x) \frac{d}{dx}f(x)
- \frac{d}{dx}f(u) = [\frac{d}{du}f(u)]\frac{du}{dx}
- \frac{d}{dx}xm = mxm − 1
- \frac{d}{dx}sin x = cos x
- \frac{d}{dx}cos x = −sin x
- \frac{d}{dx}tan x = sec2 x
- \frac{d}{dx}cot x = −csc2 x
- \frac{d}{dx}sec x = tan x sec x
- \frac{d}{dx}csc x = −cot x csc x
- \frac{d}{dx}ex = ex
- \frac{d}{dx}ln x = \frac{1}{x}
- \frac{d}{dx}sin−1 x = \frac{1}{1 − x^{2}}
- \frac{d}{dx}cos−1 x = − \frac{1}{1 − x^{2}}
- \frac{d}{dx}tan−1 x = − \frac{1}{1 + x^{2}}
Integrals
- \inta f(x)dx = a \intf(x)dx
- \int[f(x) + g(x)]dx = \intf(x)dx + \intg(x)dx
- \intxm dx = \frac{x^{m + 1}}{m + 1} for (m ≠ −1) = ln x for (m = −1)
- \intsin x dx = −cos x
- \intcos x dx = sin x
- \inttan x dx = ln|sec x|
- \intsin2 (ax) dx = \frac{x}{2} − \frac{\sin 2ax}{4a}
- \intcos2 (ax) dx = \frac{x}{2} + \frac{\sin 2ax}{4a}
- \intsin (ax) cos (ax) dx = − \frac{\cos 2ax}{4a}
- \inteax dx = \frac{1}{a}eax
- \intxeax dx = \frac{e^{ax}}{a^{2}}(ax − 1)
- \intln ax dx = x ln ax − x
- \int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a}tan−1 \frac{x}{a}
- \int \frac{dx}{a^{2} − x^{2}} = \frac{1}{2a} ln\big| \frac{x + a}{x − a} \big|
- \int \frac{dx}{\sqrt{a^{2} + x^{2}}} = sinh−1 \frac{x}{a}
- \int \frac{dx}{\sqrt{a^{2} - x^{2}}} = sin−1 \frac{x}{a}
- \int \sqrt{a^{2} + x^{2}} dx = \frac{x}{2} \sqrt{a^{2} + x^{2}} + \frac{a^{2}}{2} \sinh^{−1} \frac{x}{a}
- \int \sqrt{a^{2} - x^{2}} dx = \frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{−1} \frac{x}{a}
Contributors and Attributions
Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).