Appendix E: Mathematical Formulas
- Page ID
- 7936
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Quadratic formula
If ax2 + bx + c = 0, then x = \(\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\)
Table E1 - Geometry
Triangle of base b and height h | Area = \(\frac{1}{2}\)bh | |
Circle of radius r | Circumference = 2\(\pi\)r | Area = \(\pi\)r2 |
Sphere of radius r | Surface Area = 2\(\pi\)r2 | Volume = \(\frac{4}{3} \pi\)r3 |
Cylinder of radius r and height h | Area of curved surface = 2\(\pi\)rh | Volume = \(\pi\)r2h |
Trigonometry
Trigonometric Identities
- sin \(\theta\) = \(\frac{1}{\csc \theta}\)
- cos \(\theta\) = \(\frac{1}{\sec \theta}\)
- tan \(\theta\) = \(\frac{1}{\cot \theta}\)
- sin(90° − \(\theta\)) = cos \(\theta\)
- cos(90° − \(\theta\)) = sin \(\theta\)
- tan(90° − \(\theta\)) = cot \(\theta\)
- sin2 \(\theta\) + cos2 \(\theta\) = 1
- sec2 \(\theta\) − tan2 \(\theta\) = 1
- tan \(\theta\) = \(\frac{\sin \theta}{\cos \theta}\)
- sin(\(\alpha \pm \beta\)) = sin \(\alpha\) cos \(\beta\) ± cos \(\alpha\) sin \(\beta\)
- cos(\(\alpha \pm \beta\)) = cos \(\alpha\) cos \(\beta\) ∓ sin \(\alpha\) sin \(\beta\)
- tan(\(\alpha \pm \beta\)) = \(\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}\)
- sin 2\(\theta\) = 2sin \(\theta\)cos \(\theta\)
- cos 2\(\theta\) = cos2 \(\theta\) − sin2 \(\theta\) = 2 cos2 \(\theta\) − 1 = 1 − 2 sin2 \(\theta\)
- sin \(\alpha\) + sin \(\beta\) = 2 sin\(\frac{1}{2}\)(\(\alpha\) + \(\beta\))cos\(\frac{1}{2}\)(\(\alpha\) − \(\beta\))
- cos \(\alpha\) + cos \(\beta\) = 2 cos\(\frac{1}{2}\)(\(\alpha\) + \(\beta\))cos\(\frac{1}{2}\)(\(\alpha\) − \(\beta\))
Triangles
- Law of sines: \(\frac{a}{\sin \alpha}\) = \(\frac{b}{\sin \beta}\) = \(\frac{c}{\sin \gamma}\)
- Law of cosines: c2 = a2 + b2 − 2ab cos \(\gamma\)
- Pythagorean theorem: a2 + b2 = c2
Series expansions
- Binomial theorem: (a + b)n = an + nan-1b + \(\frac{n(n-1)a^{n-2} b^{2}}{2!}\) + \(\frac{n(n-1)(n-2)a^{n-3} b^{3}}{3!}\) + \(\cdots\)
- (1 ± x)n = 1 ± \(\frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} \pm \cdots\) (x2 < 1)
- (1 ± x)-n = 1 ∓ \(\frac{nx}{1!} + \frac{n(n+1)x^{2}}{2!} \mp \cdots\) (x2 < 1)
- sin x = x - \(\frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \cdots\)
- cos x = 1 - \(\frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots\)
- tan x = x + \(\frac{x^{3}}{3} + \frac{2x^{5}}{15} + \cdots\)
- ex = 1 + x + \(\frac{x^{2}}{2!} + \cdots\)
- ln(1 + x) = x − \(\frac{1}{2}x^{2} + \frac{1}{3}x^{3} − \cdots\) (|x| < 1)
Derivatives
- \(\frac{d}{dx}\)[a f(x)] = a \(\frac{d}{dx}\)f(x)
- \(\frac{d}{dx}\)[f(x) + g(x)] = \(\frac{d}{dx}\)f(x) + \(\frac{d}{dx}\)g(x)
- \(\frac{d}{dx}\)[f(x)g(x)] = f(x) \(\frac{d}{dx}\)g(x) + g(x) \(\frac{d}{dx}\)f(x)
- \(\frac{d}{dx}\)f(u) = [\(\frac{d}{du}\)f(u)]\(\frac{du}{dx}\)
- \(\frac{d}{dx}\)xm = mxm − 1
- \(\frac{d}{dx}\)sin x = cos x
- \(\frac{d}{dx}\)cos x = −sin x
- \(\frac{d}{dx}\)tan x = sec2 x
- \(\frac{d}{dx}\)cot x = −csc2 x
- \(\frac{d}{dx}\)sec x = tan x sec x
- \(\frac{d}{dx}\)csc x = −cot x csc x
- \(\frac{d}{dx}\)ex = ex
- \(\frac{d}{dx}\)ln x = \(\frac{1}{x}\)
- \(\frac{d}{dx}\)sin−1 x = \(\frac{1}{1 − x^{2}}\)
- \(\frac{d}{dx}\)cos−1 x = \(− \frac{1}{1 − x^{2}}\)
- \(\frac{d}{dx}\)tan−1 x = \(− \frac{1}{1 + x^{2}}\)
Integrals
- \(\int\)a f(x)dx = a \(\int\)f(x)dx
- \(\int\)[f(x) + g(x)]dx = \(\int\)f(x)dx + \(\int\)g(x)dx
- \(\int\)xm dx = \(\frac{x^{m + 1}}{m + 1}\) for (m ≠ −1) = ln x for (m = −1)
- \(\int\)sin x dx = −cos x
- \(\int\)cos x dx = sin x
- \(\int\)tan x dx = ln|sec x|
- \(\int\)sin2 (ax) dx = \(\frac{x}{2}\) − \(\frac{\sin 2ax}{4a}\)
- \(\int\)cos2 (ax) dx = \(\frac{x}{2}\) + \(\frac{\sin 2ax}{4a}\)
- \(\int\)sin (ax) cos (ax) dx = \(− \frac{\cos 2ax}{4a}\)
- \(\int\)eax dx = \(\frac{1}{a}\)eax
- \(\int\)xeax dx = \(\frac{e^{ax}}{a^{2}}\)(ax − 1)
- \(\int\)ln ax dx = x ln ax − x
- \(\int \frac{dx}{a^{2} + x^{2}}\) = \(\frac{1}{a}\)tan−1 \(\frac{x}{a}\)
- \(\int \frac{dx}{a^{2} − x^{2}}\) = \(\frac{1}{2a}\) ln\(\big| \frac{x + a}{x − a} \big|\)
- \(\int \frac{dx}{\sqrt{a^{2} + x^{2}}}\) = sinh−1 \(\frac{x}{a}\)
- \(\int \frac{dx}{\sqrt{a^{2} - x^{2}}}\) = sin−1 \(\frac{x}{a}\)
- \(\int \sqrt{a^{2} + x^{2}}\) dx = \(\frac{x}{2} \sqrt{a^{2} + x^{2}} + \frac{a^{2}}{2} \sinh^{−1} \frac{x}{a}\)
- \(\int \sqrt{a^{2} - x^{2}}\) dx = \(\frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{−1} \frac{x}{a}\)
Contributors and Attributions
Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).