Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Appendix E: Mathematical Formulas

( \newcommand{\kernel}{\mathrm{null}\,}\)

Quadratic formula

If ax2 + bx + c = 0, then x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}

Table E1 - Geometry

Triangle of base b and height h Area = \frac{1}{2}bh
Circle of radius r Circumference = 2\pir Area = \pir2
Sphere of radius r Surface Area = 2\pir2 Volume = \frac{4}{3} \pir3
Cylinder of radius r and height h Area of curved surface = 2\pirh Volume = \pir2h

Trigonometry

Trigonometric Identities

  1. sin \theta = \frac{1}{\csc \theta}
  2. cos \theta = \frac{1}{\sec \theta}
  3. tan \theta = \frac{1}{\cot \theta}
  4. sin(90° − \theta) = cos \theta
  5. cos(90° − \theta) = sin \theta
  6. tan(90° − \theta) = cot \theta
  7. sin2 \theta + cos2 \theta = 1
  8. sec2 \theta − tan2 \theta = 1
  9. tan \theta = \frac{\sin \theta}{\cos \theta}
  10. sin(\alpha \pm \beta) = sin \alpha cos \beta ± cos \alpha sin \beta
  11. cos(\alpha \pm \beta) = cos \alpha cos \beta ∓ sin \alpha sin \beta
  12. tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}
  13. sin 2\theta = 2sin \thetacos \theta
  14. cos 2\theta = cos2 \theta − sin2 \theta = 2 cos2 \theta − 1 = 1 − 2 sin2 \theta
  15. sin \alpha + sin \beta = 2 sin\frac{1}{2}(\alpha + \beta)cos\frac{1}{2}(\alpha\beta)
  16. cos \alpha + cos \beta = 2 cos\frac{1}{2}(\alpha + \beta)cos\frac{1}{2}(\alpha\beta)

Triangles

  1. Law of sines: \frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}
  2. Law of cosines: c2 = a2 + b2 − 2ab cos \gamma

clipboard_efb3394f8f70a387fba94abe790df6e23.png

  1. Pythagorean theorem: a2 + b2 = c2

clipboard_ed5281936b046caa868463ec258c8a722.png

Series expansions

  1. Binomial theorem: (a + b)n = an + nan-1b + \frac{n(n-1)a^{n-2} b^{2}}{2!} + \frac{n(n-1)(n-2)a^{n-3} b^{3}}{3!} + \cdots
  2. (1 ± x)n = 1 ± \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} \pm \cdots (x2 < 1)
  3. (1 ± x)-n = 1 ∓ \frac{nx}{1!} + \frac{n(n+1)x^{2}}{2!} \mp \cdots (x2 < 1)
  4. sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \cdots
  5. cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots
  6. tan x = x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \cdots
  7. ex = 1 + x + \frac{x^{2}}{2!} + \cdots
  8. ln(1 + x) = x − \frac{1}{2}x^{2} + \frac{1}{3}x^{3} − \cdots (|x| < 1)

Derivatives

  1. \frac{d}{dx}[a f(x)] = a \frac{d}{dx}f(x)
  2. \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)
  3. \frac{d}{dx}[f(x)g(x)] = f(x) \frac{d}{dx}g(x) + g(x) \frac{d}{dx}f(x)
  4. \frac{d}{dx}f(u) = [\frac{d}{du}f(u)]\frac{du}{dx}
  5. \frac{d}{dx}xm = mxm − 1
  6. \frac{d}{dx}sin x = cos x
  7. \frac{d}{dx}cos x = −sin x
  8. \frac{d}{dx}tan x = sec2 x
  9. \frac{d}{dx}cot x = −csc2 x
  10. \frac{d}{dx}sec x = tan x sec x
  11. \frac{d}{dx}csc x = −cot x csc x
  12. \frac{d}{dx}ex = ex
  13. \frac{d}{dx}ln x = \frac{1}{x}
  14. \frac{d}{dx}sin−1 x = \frac{1}{1 − x^{2}}
  15. \frac{d}{dx}cos−1 x = − \frac{1}{1 − x^{2}}
  16. \frac{d}{dx}tan−1 x = − \frac{1}{1 + x^{2}}

Integrals

  1. \inta f(x)dx = a \intf(x)dx
  2. \int[f(x) + g(x)]dx = \intf(x)dx + \intg(x)dx
  3. \intxm dx = \frac{x^{m + 1}}{m + 1} for (m ≠ −1) = ln x for (m = −1)
  4. \intsin x dx = −cos x
  5. \intcos x dx = sin x
  6. \inttan x dx = ln|sec x|
  7. \intsin2 (ax) dx = \frac{x}{2}\frac{\sin 2ax}{4a}
  8. \intcos2 (ax) dx = \frac{x}{2} + \frac{\sin 2ax}{4a}
  9. \intsin (ax) cos (ax) dx = − \frac{\cos 2ax}{4a}
  10. \inteax dx = \frac{1}{a}eax
  11. \intxeax dx = \frac{e^{ax}}{a^{2}}(ax − 1)
  12. \intln ax dx = x ln ax − x
  13. \int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a}tan−1 \frac{x}{a}
  14. \int \frac{dx}{a^{2} − x^{2}} = \frac{1}{2a} ln\big| \frac{x + a}{x − a} \big|
  15. \int \frac{dx}{\sqrt{a^{2} + x^{2}}} = sinh−1 \frac{x}{a}
  16. \int \frac{dx}{\sqrt{a^{2} - x^{2}}} = sin−1 \frac{x}{a}
  17. \int \sqrt{a^{2} + x^{2}} dx = \frac{x}{2} \sqrt{a^{2} + x^{2}} + \frac{a^{2}}{2} \sinh^{−1} \frac{x}{a}
  18. \int \sqrt{a^{2} - x^{2}} dx = \frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{−1} \frac{x}{a}

Contributors and Attributions

  • Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).


Appendix E: Mathematical Formulas is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?