Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Author
    • Embed Hypothes.is?
    • Embebbed CalcPlot3D?
    • Cover Page
    • License
    • Show TOC
    • Transcluded
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
      • Screen CSS
      • PrintOptions
    • Include attachments
    Searching in
    About 3 results
    • https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_III_(Chong)/01%3A_Scattering_Theory/1.09%3A_Example-_Uniform_Spherical_Well_in_3D
      Let us do this for just the first two terms in the series: \[\begin{align} \begin{aligned}f(\mathbf{k}_i\rightarrow \mathbf{k}_f) &\approx - \frac{2m}{\hbar^2} \; 2\pi^2 \Bigg[\int d^3r_1\; \frac{\exp...Let us do this for just the first two terms in the series: \[\begin{align} \begin{aligned}f(\mathbf{k}_i\rightarrow \mathbf{k}_f) &\approx - \frac{2m}{\hbar^2} \; 2\pi^2 \Bigg[\int d^3r_1\; \frac{\exp(-i\mathbf{k}_f \cdot \mathbf{r}_1)}{(2\pi)^{3/2}} \, V(\mathbf{r}_1) \, \frac{\exp(i\mathbf{k}_i \cdot \mathbf{r}_1)}{(2\pi)^{3/2}} \\&\qquad\qquad\quad + \int d^3r_1 \!\! \int d^3r_2 \; \frac{\exp(-i\mathbf{k}_f \cdot \mathbf{r}_2)}{(2\pi)^{3/2}} \, V(\mathbf{r}_2) \, \langle\mathbf{r}_2|\hat{G}_…
    • https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Celestial_Mechanics_(Tatum)/05%3A_Gravitational_Field_and_Potential/5.11%3A_Legendre_Polynomials
      In this section we cover just enough about Legendre polynomials to be useful in the following section.
    • https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Celestial_Mechanics_(Tatum)/01%3A_Numerical_Methods/1.14%3A_Legendre_Polynomials
      The coefficients of the successive power of r are the Legendre polynomials; the coefficient of rl, which is Pl(x), is the Legendre polynomial of order l, and it is a polynomial in \(...The coefficients of the successive power of r are the Legendre polynomials; the coefficient of rl, which is Pl(x), is the Legendre polynomial of order l, and it is a polynomial in x including terms as high as xl.

    Support Center

    How can we help?