Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

5.11: Legendre Polynomials

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}

In this section we cover just enough about Legendre polynomials to be useful in the following section. Before starting, I want you to expand the following expression, by the binomial theorem, for | x |< 1, up to x^4 :

\dfrac{1}{(1-2x \cos θ + x^2)^{1/2}}. \label{5.11.1} \tag{5.11.1}

Please do go ahead and do it. Well, you probably won’t, so I’d better do it myself:

I’ll start with

(1-X)^{-1/2} = 1 + \dfrac{1}{2} X + \dfrac{3}{8} X^2 + \dfrac{5}{16} X^3 + \dfrac{35}{128} X^4 ... \label{5.11.2} \tag{5.11.2}

and therefore

[1-x(2\cos θ - x)]^{-1/2} = 1 + \dfrac{1}{2} x (2\cos θ - x) + \dfrac{3}{8} x^2 (2\cos θ - x)^2 + \dfrac{5}{16} x^3 (2\cos θ - x)^3 + \dfrac{35}{128} x^4 (2\cos θ - x)^4 ... \label{5.11.3} \tag{5.11.3}

= 1 + x \cos θ - \dfrac{1}{2} x^2 + \dfrac{3}{8}x^2 (4 \cos^2 θ - 4x \cos θ + x^2 ) + \dfrac{5}{16} x^3 (8 \cos^3 θ - 12x \cos^2 θ + 6x^2 \cos θ - x^3) + \dfrac{35}{128} x (16 \cos^4 θ - 32x \cos^3 θ + 24x^2 \cos^2 θ - 8x^3 \cos θ + x^4 ) ... \label{5.11.4} \tag{5.11.4}

= 1 + x \cos θ + x^2 (-\dfrac{1}{2} + \dfrac{3}{2} \cos^2 θ ) + x^3 (-\dfrac{3}{2} \cos θ + \dfrac{5}{2} \cos^3 θ ) + x^4 (\dfrac{3}{8} - \dfrac{15}{4} \cos^2 θ + \dfrac{35}{8} \cos^4 θ)... \label{5.11.5} \tag{5.11.5}

The coefficients of the powers of x are the Legendre polynomials P_l(\cos θ ), so that

\dfrac{1}{(1-2x \cos θ + x^2)^{1/2}} = 1 + x P_1 ( \cos θ) + x^2 P_2 (\cos θ) + x^3 P_3 (\cos θ) + x^4 P_4 (\cos θ) + ... \label{5.11.6} \tag{5.11.6}

The Legendre polynomials with argument \cos θ can be written as series of terms in powers of \cos θ by substitution of \cos θ for x in Equations 1.12.5 in Section 1.12 of Chapter 1. Note that x in Section 1 is not the same as x in the present section. Alternatively they can be written as series of cosines of multiples of θ as follows.

\begin{array}{l} P_0 = 1 \\ P_1 = \cos θ \\ P_2 = \dfrac{1}{4} (3\cos 2θ + 1) \\ P_3 = \dfrac{1}{8} (5\cos 3θ + 3\cos θ) \\ P_4 = \dfrac{1}{64} (35 \cos 4 θ + 20 \cos 2 θ + 9 ) \\ P_5 = \dfrac{1}{128} (63 \cos 5 θ + 35 \cos 3 θ + 30 \cos θ) \\ P_6 = \dfrac{1}{512} (231 \cos 6 θ + 126 \cos 4θ + 105 \cos 2θ + 50) \\ P_7 = \dfrac{1}{1024} (429 \cos 7θ + 231 \cos 5θ + 189 \cos 3θ + 175 \cos θ) \\ P_8 = (6435 \cos 8θ + 3432 \cos 6θ + 2772 \cos 4θ + 2520 \cos 2θ + 1225)/2^{14} \\ \label{5.11.7} \tag{5.11.7} \end{array}

For example, P_6(\cos θ) can be written either as given by Equation \ref{5.11.7}, or as given by Equation 1, namely

P_6 = \dfrac{1}{16} (231c^6 - 315 c^4 + 105c^2 - 5), \text{ where } c = \cos θ. \label{5.11.8} \tag{5.11.8}

The former may look neater, and the latter may look “awkward” because of all the powers. However, the latter is far faster to compute, particularly when written as nested parentheses:

P_6 = (-5 + C(105 + C(-315 + 231C)))/16, \text{ where } C = \cos^2 θ. \label{5.11.9} \tag{5.11.9}


This page titled 5.11: Legendre Polynomials is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?