Skip to main content
Physics LibreTexts

12.3: Electrical Analogue

  • Page ID
    7004
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Suppose that an alternating potential difference \( E=\hat{E}\sin\omega t\) is applied across an LCR circuit. We refer to Equation 11.6.3, and we see that the equation that governs the charge on the capacitor is

    \[ L\ddot{Q}+R\dot{Q}+\frac{Q}{C}=\hat{E}\sin\omega t. \label{12.3.1} \]

    We can differentiate both sides with respect to time, and divide by \( L\), and hence see that the current is given by

    \[ \ddot{I}+\frac{R}{L}\dot{I}+\frac{1}{LC}I=\frac{\hat{E}\omega}{L}\cos\omega t. \label{12.3.2} \]

    We can compare this directly with Equation 12.2.2, so that we have

    \[ \gamma = \frac{R}{L},\quad \omega_{0}^{2}=\frac{1}{\sqrt{LC}},\quad \hat{f}=\frac{\hat{E}\omega}{L}. \label{12.3.3} \]

    Then, by comparison with Equation 12.2.5, we see that I will lag behind \( E\) by \( \alpha\), where

    \[ \tan\alpha =\frac{\frac{R\omega}{L}}{\frac{1}{LC}-\omega^{2}}=\frac{R}{\frac{1}{C\omega}-L\omega}. \label{12.3.4} \]

    This is just what we obtain from the more familiar complex number approach to alternating current circuits.


    This page titled 12.3: Electrical Analogue is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?