Skip to main content
Physics LibreTexts

1.6E: Field on the Axis of a Uniformly Charged Disc

  • Page ID
    6476
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    I.3.png
    \(\text{FIGURE I.3}\)

    We suppose that we have a circular disc of radius a bearing a surface charge density of \(σ\) coulombs per square metre, so that the total charge is \(Q = πa^2 σ\). We wish to calculate the field strength at a point P on the axis of the disc, at a distance \(x\) from the centre of the disc.

    Consider an elemental annulus of the disc, of radii \(r\) and \(r + δr\). Its area is \(2πrδr\) and so it carries a charge \(2πσrδr\). Using the result of subsection 1.6.4, we see that the field at P from this charge is

    \[\frac{2\pi\sigma r \,\delta r}{4\pi\epsilon_0}\cdot \frac{x}{(r^2+x^2)^{3/2}}=\frac{\sigma x}{2\epsilon_0}\cdot \frac{r\,\delta r}{(r^2+x^2)^{3/2}}.\]

    But \(r=x\tan \theta,\, \delta r=x\sec^2 \theta \delta \theta \text{ and }(r^2+x^2)^{1/2}=x\sec \theta\). Thus the field from the elemental annulus can be written

    \[\frac{\sigma}{2\epsilon_0}\sin \theta \,\delta \theta .\]

    The field from the entire disc is found by integrating this from \(θ = 0 \text{ to }θ = α\) to obtain

    \[E=\frac{\sigma}{2\epsilon_0}(1-\cos α )=\frac{\sigma}{2\epsilon_0}\left ( 1-\frac{x}{(a^2+x^2)^{1/2}}\right ).\tag{1.6.11}\]

    This falls off monotonically from \(σ/(2\epsilon_0)\) just above the disc to zero at infinity.


    This page titled 1.6E: Field on the Axis of a Uniformly Charged Disc is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.