13.7: The RLC Series Acceptor Circuit
A resistance, inductance and a capacitance in series is called an "acceptor" circuit, presumably because, for some combination of the parameters, the magnitude of the inductance is a minimum, and so current is accepted most readily. We see in figure XIII.5 an alternating voltage applied across such an R, L and C.

FIGURE XIII.5 
C 
L 
R 
The impedance is
13.7.1
We can see that the voltage leads on the current if the reactance is positive; that is, if the inductive reactance is greater than the capacitive reactance; that is, if (Recall that the frequency, n, is w/(2p)). If the voltage lags behind the current. And if the circuit is purely resistive, and voltage and current are in phase.
The magnitude of the impedance (which is equal to ) is
13.7.2
and this is least (and hence the current is greatest) when the resonant frequency, which I shall denote by w_{0}.
It is of interest to draw a graph of how the magnitude of the impedance varies with frequency for various values of the circuit parameters. I can reduce the number of parameters by defining the dimensionless quantities
13.7.3
13.7.4
and 13.7.4
You should verify that Q is indeed dimensionless. We shall see that the sharpness of the resonance depends on Q, which is known as the quality factor (hence the symbol Q). In terms of the dimensionless parameters, equation 13.7.2 becomes
13.7.5
This is shown in figure XIII.6, in which it can be seen that the higher the quality factor, the sharper the resonance.
In particular, it is easy to show that the frequencies at which the impedance is twice its minimum value are given by the positive solutions of
13.7.6
If I denote the smaller and larger of these solutions by W_{} and W_{+}, then W_{+}  W_{} will serve as a useful description of the width of the resonance, and this is shown as a function of quality factor in figure XIII.7.