Skip to main content
\(\require{cancel}\)
Physics LibreTexts

5.8.3: Plane Discs

  • Page ID
    8147
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Refer to figure \(\text{V.2A}\). The potential at \(\text{P}\) from the elemental disc is

    \[dψ = -\frac{GδM}{\left( r^2 + z^2 \right)^{1/2}} = -\frac{2 \pi G σrδr}{\left( r^2 + z^2 \right)^{1/2}}. \label{5.8.10} \tag{5.8.10}\]

    The potential from the whole disc is therefore

    \[ψ = -2 \pi G σ \int_0^a \frac{r dr}{\left( r^2 + z^2 \right)^{1/2}}. \label{5.8.11} \tag{5.8.11}\]

    The integral is trivial after a brilliant substitution such as \(X = r^2 + z^2\) or \(r = z \tan θ\), and we arrive at

    \[ψ=-2 \pi G σ \left( \sqrt{z^2 + a^2} - z \right). \label{5.8.12} \tag{5.8.12}\]

    This increases to zero as \(z → ∞\). We can also write this as

    \[ψ = -\frac{2\pi Gm}{\pi a^2} \cdot \left[ z \left( 1 + \frac{a^2}{z^2} \right)^{1/2} - z \right] , \label{5.8.13} \tag{5.8.13}\]

    and, if you expand this binomially, you see that for large \(z\) it becomes, as expected, \(−Gm/z\).


    This page titled 5.8.3: Plane Discs is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.