# 2.4: Surfaces - Single-scattering Albedo

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

We have already encountered a bare-boned, but nonetheless adequate, definition of single scattering albedo in Chapter 1. The loss of radiance from a beam of radiance $$L$$ traversing a thickness $$ds$$ of a medium is

$dL = - \varepsilon L ds = - ( \alpha + \sigma ) L ds$

and the single scattering albedo is that fraction of the loss which can be attributed to scattering alone. i.e.

$\varpi_0 = \frac{ \sigma}{ \alpha + \sigma} = \frac{ \sigma}{ \varepsilon}$

and the single scattering albedo is thus the ratio of the scattering coefficient to the extinction coefficient.

Single scattering albedo is the property of a surface or a layer, and may be regarded as the fundamental albedo, since all albedos that will be derived here from a given definition or reflectance rule will contain at least one instance of ϖ0.

This page titled 2.4: Surfaces - Single-scattering Albedo is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Max Fairbairn & Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.