# 2.6: Net Flux and Exitance

• • Max Fairbairn & Jeremy Tatum
• University of Victoria
$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Formerly known as emittance, the exitance $$M$$ refers to a point on a reflecting or emitting surface and is defined as the total power emitted in all directions per unit physical area, so that

$M = \int_0^{2 \pi} \int_{0}^{ \pi/2} L ( \vartheta, \varphi) \sin \vartheta \cos \vartheta d \vartheta d \varphi$

where it may be seen from the limits of integration that “in all directions” means over a hemisphere. The factor $$\sin \vartheta d \vartheta d \varphi$$ is an element of solid angle, dω, and the factor $$\cos \vartheta$$ is needed to convert the projected area of radiance back into physical area. Using the notation of Chapter 1., i.e. let $$\mu = \cos \vartheta,~ d \mu = - \sin \vartheta d \vartheta$$, we have

$M = \int_0^{2 \pi} \int_0^1 L ( \mu,~ \varphi ) \mu d \mu d \varphi .$

If we compare M to Chandrasekhar’s quantity the net flux πF, which, in particular, he uses for a plane parallel beam of radiation

$\begin{array}{l} \pi F & = \int_0^{2 \pi} \int_0^{2 \pi} L ( \vartheta,~ \varphi ) \sin \vartheta \cos \vartheta d \vartheta d \varphi \\ ~ & = \int_0^{2 \pi} \int_{-1}^1 L ( ( \mu,~ \varphi ) \mu d \mu d \varphi \end{array}$

we see that the net flux is indeed the result of integration over all directions, i.e. over a sphere. It follows that net flux and exitance are not the same thing (although there may be situations in which they amount to the same), and nor does $$πF$$ always mean the strength of a plane parallel beam of radiant flux density F. Indeed, we can calculate the net flux of a plane parallel beam incident on a surface in the direction $$\left( \mu_0,~ \varphi_0 \right)$$, using the radiance of a plane parallel beam given by Chapter1, equation (7), as

$\pi F = \int_0^{2 \pi} \int_{-1}^1 \textbf{F} \delta \left( \mu - \mu_0 \right) \delta \left( \varphi - \varphi_0 \right) \mu d \mu d \varphi,$

which results in

$\pi F = \bf{F} \mu_0,$

this result being the irradiance E of the surface, as we knew it should be!

This page titled 2.6: Net Flux and Exitance is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Max Fairbairn & Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.