# 2.7: Surfaces - Hemispherical Albedo

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Also known as the directional hemispherical reflectance, the hemispherical albedo ρ refers to a point on a reflecting surface, and is defined as the ratio of the exitance M to the irradiance E, so that

$\rho \left( \mu_0, \varphi_0 \right) = \frac{M}{E \left( \mu_0, \varphi_0 \right)},$

and in terms of the BRDF, we have

$\rho \left( \mu_0, \varphi_0 \right) = \int_0^{2 \pi} \int_0^{1} f_r \left( \mu, \varphi; \mu_0, \varphi_0 \right) \mu d \mu d \varphi.$

Unlike the single scattering albedo, ρ and the other albedos that we will encounter do not necessarily have in principle a maximum possible value of unity. (See A Brief History of the Lommel-Seeliger Law). The scattering properties of the surfaces that we have studied so far are summarised in Table I, from which, for the Lommel-Seeliger law, it can be seen that the maximum possible value for ρ is ½ and 0.125 for the normal albedo.

Table I. Properties of Surfaces
Lambertian Lommel-Seeliger
fr ϖ0 $$\frac{ \varpi_0}{4 \pi} \frac{1}{ \mu_0 + \mu}$$
ρ ϖ0 $$\frac{ \varpi_0}{2} \left[ 1 - \mu_0 \ln \left( 1 + 1/ \mu_0 \right) \right]$$
pn ϖ0 $$\frac{ \varpi_0}{8}$$

This page titled 2.7: Surfaces - Hemispherical Albedo is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Max Fairbairn & Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.