Skip to main content
Physics LibreTexts

2.7: Surfaces - Hemispherical Albedo

  • Page ID
    8724
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Also known as the directional hemispherical reflectance, the hemispherical albedo ρ refers to a point on a reflecting surface, and is defined as the ratio of the exitance M to the irradiance E, so that

    \[ \rho \left( \mu_0, \varphi_0 \right) = \frac{M}{E \left( \mu_0, \varphi_0 \right)},\]

    and in terms of the BRDF, we have

    \[ \rho \left( \mu_0, \varphi_0 \right) = \int_0^{2 \pi} \int_0^{1} f_r \left( \mu, \varphi; \mu_0, \varphi_0 \right) \mu d \mu d \varphi.\]

    Unlike the single scattering albedo, ρ and the other albedos that we will encounter do not necessarily have in principle a maximum possible value of unity. (See A Brief History of the Lommel-Seeliger Law). The scattering properties of the surfaces that we have studied so far are summarised in Table I, from which, for the Lommel-Seeliger law, it can be seen that the maximum possible value for ρ is ½ and 0.125 for the normal albedo.

    Table I. Properties of Surfaces
    Lambertian Lommel-Seeliger
    fr ϖ0 \( \frac{ \varpi_0}{4 \pi} \frac{1}{ \mu_0 + \mu}\)
    ρ ϖ0 \( \frac{ \varpi_0}{2} \left[ 1 - \mu_0 \ln \left( 1 + 1/ \mu_0 \right) \right]\)
    pn ϖ0 \( \frac{ \varpi_0}{8}\)

    This page titled 2.7: Surfaces - Hemispherical Albedo is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Max Fairbairn & Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.