10.7: Constancy of Momentum and Isolated Systems

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Suppose we now completely isolate our system from the surroundings. When the external force acting on the system is zero,

$\overrightarrow{\mathbf{F}}^{\operatorname{ext}}=\overrightarrow{\boldsymbol{0}} \nonumber$

the system is called an isolated system. For an isolated system, the change in the momentum of the system is zero,

$\Delta \overrightarrow{\mathbf{p}}_{\mathrm{sys}}=\overrightarrow{\mathbf{0}} \quad \text { (isolated system) } \nonumber$

therefore the momentum of the isolated system is constant. The initial momentum of our system is the sum of the initial momentum of the individual particles,

$\overrightarrow{\mathbf{p}}_{\mathrm{sys}, i}=m_{1} \overrightarrow{\mathbf{v}}_{1, i}+m_{2} \overrightarrow{\mathbf{v}}_{2, i}+\cdots \nonumber$

The final momentum is the sum of the final momentum of the individual particles,

$\overrightarrow{\mathbf{p}}_{\mathrm{sys}, f}=m_{1} \overrightarrow{\mathbf{v}}_{1, f}+m_{2} \overrightarrow{\mathbf{v}}_{2, f}+\cdots \nonumber$

Note that the right-hand-sides of Equations. (10.7.3) and (10.7.4) are vector sums.

When the external force on a system is zero, then the initial momentum of the system equals the final momentum of the system,

$\overrightarrow{\mathbf{p}}_{\mathrm{sys}, i}=\overrightarrow{\mathbf{p}}_{\mathrm{sys}, f} \nonumber$

This page titled 10.7: Constancy of Momentum and Isolated Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.