Skip to main content
Physics LibreTexts

10.7: Constancy of Momentum and Isolated Systems

  • Page ID
    24755
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Suppose we now completely isolate our system from the surroundings. When the external force acting on the system is zero,

    \[\overrightarrow{\mathbf{F}}^{\operatorname{ext}}=\overrightarrow{\boldsymbol{0}} \nonumber \]

    the system is called an isolated system. For an isolated system, the change in the momentum of the system is zero,

    \[\Delta \overrightarrow{\mathbf{p}}_{\mathrm{sys}}=\overrightarrow{\mathbf{0}} \quad \text { (isolated system) } \nonumber \]

    therefore the momentum of the isolated system is constant. The initial momentum of our system is the sum of the initial momentum of the individual particles,

    \[\overrightarrow{\mathbf{p}}_{\mathrm{sys}, i}=m_{1} \overrightarrow{\mathbf{v}}_{1, i}+m_{2} \overrightarrow{\mathbf{v}}_{2, i}+\cdots \nonumber \]

    The final momentum is the sum of the final momentum of the individual particles,

    \[\overrightarrow{\mathbf{p}}_{\mathrm{sys}, f}=m_{1} \overrightarrow{\mathbf{v}}_{1, f}+m_{2} \overrightarrow{\mathbf{v}}_{2, f}+\cdots \nonumber \]

    Note that the right-hand-sides of Equations. (10.7.3) and (10.7.4) are vector sums.

    When the external force on a system is zero, then the initial momentum of the system equals the final momentum of the system,

    \[\overrightarrow{\mathbf{p}}_{\mathrm{sys}, i}=\overrightarrow{\mathbf{p}}_{\mathrm{sys}, f} \nonumber \]


    This page titled 10.7: Constancy of Momentum and Isolated Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.