Skip to main content
Physics LibreTexts

6.6: Hamilton's Use of the Legendre Transform

  • Page ID
    29566
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We have the Lagrangian \(\begin{equation}
    L\left(q_{i}, \dot{q}_{i}\right)
    \end{equation}\), and Hamilton's insight that these are not the best variables, we need to replace the Lagrangian with a closely related function (like going from the energy to the free energy), that is a function of the qi (that's not going to change) and, instead of the \(\begin{equation}
    \dot{q}_{i} \text { 's, the } p_{i} \text { 's, with } p_{i}=\partial L\left(q_{i}, \dot{q}_{i}\right) / \partial \dot{q}_{i}
    \end{equation}\). This is exactly a Legendre transform like the one from \(\begin{equation}
    f \rightarrow g
    \end{equation}\) discussed above.

    The new function is

    \begin{equation}
    H\left(q_{i}, p_{i}\right)=\sum_{i=1}^{n} p_{i} \dot{q}_{i}-L\left(q_{i}, \dot{q}_{i}\right)
    \end{equation}

    from which

    \begin{equation}
    d H\left(p_{i}, q_{i}\right)=-\sum_{i} \dot{p}_{i} d q_{i}+\sum_{i} \dot{q}_{i} d p_{i}
    \end{equation}

    analogous to \(\begin{equation}
    d F=-S d T-P d V
    \end{equation}\) This new function is of course the Hamiltonian.


    This page titled 6.6: Hamilton's Use of the Legendre Transform is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?