Skip to main content
Physics LibreTexts

6.7: Checking that We Can Eliminate the q˙i's

  • Page ID
    30185
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We should check that we can in fact write

    \begin{equation}
    H\left(p_{i}, q_{i}\right)=\sum_{i=1}^{n} p_{i} \dot{q}_{i}-L\left(q_{i}, \dot{q}_{i}\right)
    \end{equation}

    as a function of just the variables \(\begin{equation}
    \left(q_{i}, p_{i}\right)
    \end{equation}\), with all trace of the \(\begin{equation}
    \dot{q}_{i}
    \end{equation}\)’s eliminated. Is this always possible? The answer is yes.

    Recall the \(\begin{equation}
    \dot{q}_{i}
    \end{equation}\)’s only appear in the Lagrangian in the kinetic energy term, which has the general form

    \begin{equation}
    T=\sum_{i, j} a_{i j}\left(q_{k}\right) \dot{q}_{i} \dot{q}_{j}
    \end{equation}

    where the coefficients \(\begin{equation}
    a_{i j}
    \end{equation}\) depend in general on some of the \(\begin{equation}
    q_{k}
    \end{equation}\)'s but are independent of the velocities, the \(\begin{equation}
    \dot{q}_{k} \text { 's. }
    \end{equation}\) Therefore, from the definition of the generalized momenta,

    \begin{equation}
    p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}=\sum_{j=1}^{n} a_{i j}\left(q_{k}\right) \dot{q}_{j}
    \end{equation}

    and we can write this as a vector-matrix equation,

    \begin{equation}
    \mathbf{p}=\mathbf{A} \dot{\mathbf{q}}
    \end{equation}

    That is, \(\begin{equation}
    p_{i}
    \end{equation}\) is a linear function of the \(\begin{equation}
    \dot{q}_{j} \text { 's. }
    \end{equation}\). Hence, the inverse matrix \(\begin{equation}
    \mathbf{A}^{-1}
    \end{equation}\) will give us \(\begin{equation}
    \dot{q}_{i}
    \end{equation}\) as a linear function of the pj's, and then putting this expression for the \(\begin{equation}
    \dot{q}_{i}
    \end{equation}\) into the Lagrangian gives the Hamiltonian as a function only of the qi's and the pi's, that is, the phase space variables.

    The matrix A is always invertible because the kinetic energy is positive definite (as is obvious from its Cartesian representation) and a symmetric positive definite matrix has only positive eigenvalues, and therefore is invertible.


    This page titled 6.7: Checking that We Can Eliminate the q˙i's is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?