Skip to main content
Physics LibreTexts

16.5: Vectorial Derivation of the Scattering Angle

  • Page ID
    29502
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The essential result of the above analysis was the scattering angle as a function of impact parameter, for a given incoming energy. It's worth noting that this can be found more directly by vectorial methods from Hamilton's equation.

    Recall from the last lecture Hamilton’s equation

    \begin{equation}
    \vec{L} \times m \stackrel{\ddot{\rightarrow}}{r}=-m r^{2} f(r) \frac{d \vec{r}}{d t}
    \end{equation}

    and the integral for an inverse square force \(f(r)=k / r^{2}\) (changing the sign of \(\vec{A}\) for later convenience)

    \begin{equation}
    \vec{L} \times m \dot{\vec{r}}=k m \overrightarrow{\vec{r}}+\vec{A}
    \end{equation}

    As previously discussed, multiplying by \(\vec{L}\). establishes that \(\vec{A}\) is in the plane of the orbit, and multiplying by \(\vec{r}\) gives

    \begin{equation}
    -L^{2}=k m r+A r \cos \theta
    \end{equation}

    This corresponds to the equation

    \begin{equation}
    1 / r=-e \cos \theta-1
    \end{equation}

    (the left-hand branch with the right-hand focus as origin, note from diagram above that \(\cos \theta\) is negative throughout) and

    \begin{equation}\frac{L^{2}}{k m r}=-1-\frac{A}{k m} \cos \theta\end{equation}

    To find the scattering angle, suppose the unit vector pointing parallel to the asymptote is \(\widehat{\vec{r}}_{\infty}\), so the asymptotic velocity is \(v_{\infty} \widehat{\vec{r}}_{\infty}\).

    Note that as before, \(\vec{A}\) is along the major axis (to give the correct form for the \((r, \theta)\) equation), and \(r=\infty\) gives the asymptotic angles from

    \begin{equation}
    \cos \theta_{r=\infty}=-k m / A
    \end{equation}

    We’re not rotating the hyperbola as we did in the alternative treatment above: here we keep it symmetric about the \(x\)-axis, and find its asymptotic angle to that axis, which is one-half the scattering angle.

    Now take Hamilton’s equation in the asymptotic limit, where the velocity is parallel to the displacement:

    the vector product of Hamilton’s equation \(\times \widehat{\bar{r}}_{\infty}\) yields

    \begin{equation}
    \vec{A} \times \widehat{\vec{r}}_{\infty}=\left(\vec{L} \times m v_{\infty} \widehat{\vec{r}}_{\infty}\right) \times \widehat{\vec{r}}_{\infty}=-\vec{L}(L / b)
    \end{equation}

    It follows that

    \begin{equation}
    \sin \theta_{r=\infty}=-L^{2} / A b
    \end{equation}

    And together with \(\cos \theta_{r=\infty}=-k m / A\), we find

    \begin{equation}
    \tan \theta_{r=\infty}=\frac{L^{2}}{k m b}=\frac{m b v_{\infty}^{2}}{k}
    \end{equation}

    This is the angle between the asymptote and the major axis: the scattering angle

    \begin{equation}
    \chi=\pi-2 \theta_{r=\infty}=2\left(\frac{\pi}{2}-\theta_{r=\infty}\right)=2 \tan ^{-1}\left(\frac{k}{m b v_{\infty}^{2}}\right)
    \end{equation}

    agreeing with the previous result.


    This page titled 16.5: Vectorial Derivation of the Scattering Angle is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?