Skip to main content
Physics LibreTexts

17.1: Particle in a Well

  • Page ID
    29505
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We begin with the one-dimensional case of a particle oscillating about a local minimum of the potential energy \(V(x)\). We’ll assume that near the minimum, call it \(x_{0}\) the potential is well described by the leading second-order term, \(V(x)=\frac{1}{2} V^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}\) so we’re taking the zero of potential at \(x_{0}\), assuming that the second derivative \(V^{\prime \prime}\left(x_{0}\right) \neq 0\), and (for now) neglecting higher order terms.

    clipboard_e8df4511c7b38ade1befaacc74199faf2.png

    To simplify the equations, we’ll also move the \(x\) origin to \(x_{0}\), so

    \begin{equation}
    m \ddot{x}=-V^{\prime \prime}(0) x=-k x
    \end{equation}

    replacing the second derivative with the standard “spring constant” expression.

    This equation has solution

    \begin{equation}
    x=A \cos (\omega t+\delta), \text { or } x=\operatorname{Re}\left(B e^{i \omega t}\right), \quad B=A e^{i \delta}, \quad \omega=\sqrt{k / m}
    \end{equation}

    (This can, of course, also be derived from the Lagrangian, easily shown to be \(L=\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} m \omega^{2} x^{2}\).


    This page titled 17.1: Particle in a Well is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?