Skip to main content
Physics LibreTexts

17.2: Two Coupled Pendulums

  • Page ID
    29506
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We’ll take two equal pendulums, coupled by a light spring. We take the spring restoring force to be directly proportional to the angular difference between the pendulums. (This turns out to be a good approximation.)

    For small angles of oscillation, we take the Lagrangian to be

    \begin{equation}
    L=\dfrac{1}{2} m \ell^{2} \dot{\theta}_{1}^{2}+\dfrac{1}{2} m \ell^{2} \dot{\theta}_{2}^{2}-\dfrac{1}{2} m g \ell \theta_{1}^{2}-\dfrac{1}{2} m g \ell \theta_{2}^{2}-\dfrac{1}{2} C\left(\theta_{1}-\theta_{2}\right)^{2}
    \end{equation}

    Denoting the single pendulum frequency by \(\omega_{0}\), the equations of motion are (writing \(\omega_{0}^{2}=g / \ell, k=C / m \ell^{2}\), so \(\left.[k]=T^{-2}\right)\)

    \begin{equation}
    \begin{array}{l}
    \ddot{\theta}_{1}=-\omega_{0}^{2} \theta_{1}-k\left(\theta_{1}-\theta_{2}\right) \\
    \ddot{\theta}_{2}=-\omega_{0}^{2} \theta_{2}-k\left(\theta_{2}-\theta_{1}\right)
    \end{array}
    \end{equation}

    We look for a periodic solution, writing

    \begin{equation}
    \theta_{1}(t)=A_{1} e^{i \omega t}, \quad \theta_{2}(t)=A_{2} e^{i \omega t}
    \end{equation}

    (The final physical angle solutions will be the real part.)

    The equations become (in matrix notation):

    \begin{equation}
    \omega^{2}\left(\begin{array}{c}
    A_{1} \\
    A_{2}
    \end{array}\right)=\left(\begin{array}{cc}
    \omega_{0}^{2}+k & -k \\
    -k & \omega_{0}^{2}+k
    \end{array}\right)\left(\begin{array}{c}
    A_{1} \\
    A_{2}
    \end{array}\right)
    \end{equation}

    Denoting the \(2 \times 2 \text { matrix by } \mathbf{M}\)

    \begin{equation}
    \mathbf{M} \vec{A}=\omega^{2} \vec{A}, \quad \vec{A}=\left(\begin{array}{l}
    A_{1} \\
    A_{2}
    \end{array}\right)
    \end{equation}

    This is an eigenvector equation, with \(\omega^{2}\) the eigenvalue, found by the standard procedure:

    \begin{equation}
    \operatorname{det}\left(\mathbf{M}-\omega^{2} \mathbf{I}\right)=\left|\begin{array}{cc}
    \omega_{0}^{2}+k-\omega^{2} & -k \\
    -k & \omega_{0}^{2}+k-\omega^{2}
    \end{array}\right|=0
    \end{equation}

    Solving, \(\omega^{2}=\omega_{0}^{2}+k \pm k\), that is

    \begin{equation}
    \omega^{2}=\omega_{0}^{2}, \quad \omega^{2}=\omega_{0}^{2}+2 k
    \end{equation}

    The corresponding eigenvectors are (1,1) and (1,−1).


    This page titled 17.2: Two Coupled Pendulums is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?