Skip to main content
Physics LibreTexts

17.2: Two Coupled Pendulums

  • Page ID
    29506
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We’ll take two equal pendulums, coupled by a light spring. We take the spring restoring force to be directly proportional to the angular difference between the pendulums. (This turns out to be a good approximation.)

    For small angles of oscillation, we take the Lagrangian to be

    \begin{equation}
    L=\frac{1}{2} m \ell^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m \ell^{2} \dot{\theta}_{2}^{2}-\frac{1}{2} m g \ell \theta_{1}^{2}-\frac{1}{2} m g \ell \theta_{2}^{2}-\frac{1}{2} C\left(\theta_{1}-\theta_{2}\right)^{2}
    \end{equation}

    Denoting the single pendulum frequency by \(\omega_{0}\), the equations of motion are (writing \(\omega_{0}^{2}=g / \ell, k=C / m \ell^{2}\), so \(\left.[k]=T^{-2}\right)\)

    \begin{equation}
    \begin{array}{l}
    \ddot{\theta}_{1}=-\omega_{0}^{2} \theta_{1}-k\left(\theta_{1}-\theta_{2}\right) \\
    \ddot{\theta}_{2}=-\omega_{0}^{2} \theta_{2}-k\left(\theta_{2}-\theta_{1}\right)
    \end{array}
    \end{equation}

    We look for a periodic solution, writing

    \begin{equation}
    \theta_{1}(t)=A_{1} e^{i \omega t}, \quad \theta_{2}(t)=A_{2} e^{i \omega t}
    \end{equation}

    (The final physical angle solutions will be the real part.)

    The equations become (in matrix notation):

    \begin{equation}
    \omega^{2}\left(\begin{array}{c}
    A_{1} \\
    A_{2}
    \end{array}\right)=\left(\begin{array}{cc}
    \omega_{0}^{2}+k & -k \\
    -k & \omega_{0}^{2}+k
    \end{array}\right)\left(\begin{array}{c}
    A_{1} \\
    A_{2}
    \end{array}\right)
    \end{equation}

    Denoting the \(2 \times 2 \text { matrix by } \mathbf{M}\)

    \begin{equation}
    \mathbf{M} \vec{A}=\omega^{2} \vec{A}, \quad \vec{A}=\left(\begin{array}{l}
    A_{1} \\
    A_{2}
    \end{array}\right)
    \end{equation}

    This is an eigenvector equation, with \(\omega^{2}\) the eigenvalue, found by the standard procedure:

    \begin{equation}
    \operatorname{det}\left(\mathbf{M}-\omega^{2} \mathbf{I}\right)=\left|\begin{array}{cc}
    \omega_{0}^{2}+k-\omega^{2} & -k \\
    -k & \omega_{0}^{2}+k-\omega^{2}
    \end{array}\right|=0
    \end{equation}

    Solving, \(\omega^{2}=\omega_{0}^{2}+k \pm k\), that is

    \begin{equation}
    \omega^{2}=\omega_{0}^{2}, \quad \omega^{2}=\omega_{0}^{2}+2 k
    \end{equation}

    The corresponding eigenvectors are (1,1) and (1,−1).


    This page titled 17.2: Two Coupled Pendulums is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?